Spaces:
Running
Running
#%% | |
from text2vec import SentenceModel | |
from qdrant_client import QdrantClient | |
from qdrant_client.models import VectorParams, Distance, PointStruct | |
def deterministic_id(text): | |
import hashlib | |
return int(hashlib.sha256(text.encode('utf-8')).hexdigest(), 16) >> 128 | |
def build_qa_vector_store(model_name, collection_name): | |
import pandas as pd | |
# 讀取資料 | |
df = pd.read_excel("一百問三百答.xlsx", sheet_name=0) | |
df.columns = ['Question', 'Answer'] | |
original_len = len(df) | |
questions = df['Question'].tolist() | |
answers = df['Answer'].tolist() | |
# 初始化模型 | |
model = SentenceModel(model_name) | |
question_vectors = model.encode(questions, normalize_embeddings=True) | |
embedding_dim = len(question_vectors[0]) | |
# 初始化 Qdrant | |
client = QdrantClient(path="./qadrant_data") | |
# 建立新的 collection(重新指定向量維度) | |
client.recreate_collection( | |
collection_name=collection_name, | |
vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE) | |
) | |
points = [ | |
PointStruct( | |
id=deterministic_id(q + a), | |
vector=vector.tolist(), | |
payload={"question": q, "answer": a} | |
) | |
for q, a, vector in zip(questions, answers, question_vectors) | |
] | |
client.upsert(collection_name=collection_name, points=points) | |
print(f"✅ 向量資料庫建立完成,共嵌入 {len(points)} 筆 QA。") | |
client.scroll(collection_name=collection_name, limit=100) | |
def retrieve_and_rerank(query, model_name, collection_name, cross_encoder_model, score_threshold=0.6, search_top_k=25, rerank_top_k=5): | |
from semantic_reranker import rerank_results | |
model = SentenceModel(model_name) | |
client = QdrantClient(path="./qadrant_data") | |
query_vector = model.encode(query, normalize_embeddings=True) | |
results = client.search( | |
collection_name=collection_name, | |
query_vector=query_vector.tolist(), | |
limit=search_top_k, | |
score_threshold=score_threshold | |
) | |
retrieved_answers = [r.payload["answer"] for r in results] | |
# 用 cross-encoder rerank | |
reranked = rerank_results( | |
cross_encoder_model=cross_encoder_model, | |
query=query, | |
candidate_passages=retrieved_answers, | |
top_k=rerank_top_k | |
) | |
return reranked | |
def generate_response_from_local_llm(query, passages, tokenizer, model, max_new_tokens=256): | |
context = "\n".join([f"- {p}" for p in passages]) | |
if not passages: | |
return "抱歉,沒有找到相關資料。" | |
prompt = f"""你是一個客服助理。請根據以下資料回答使用者問題。 | |
問題:{query} | |
相關資料: | |
{context} | |
回答時注意:。 | |
- 一定要針對問題回答 | |
- 若是問題太過負面一定要先反駁,再巧妙的轉移焦點或拒答。 | |
- 只回答問題中提到的內容,避免無關的話題。 | |
- 只使用相關資料的內容來回答問題,避免添加個人意見或無關的資訊,若有必要可拒答。 | |
- 只回答正面、積極的內容,避免使用負面或消極的語言。 | |
- 請以溫暖又充滿人性的方式回答問題。 | |
- 回答時平易近人,像和朋友交談一樣。 | |
- 精簡回答,避免冗長的解釋。 | |
回答:""" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=0.95, | |
temperature=0.7 | |
) | |
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# 提取回答部分 | |
answer = decoded_output.split("回答:", 1)[-1].strip() | |
# answer = answer + "大罷免!大成功!" | |
return answer |