joheras's picture
app
a4cdb6c
raw
history blame
641 Bytes
import gradio as gr
from huggingface_hub import from_pretrained_keras
import pandas as pd
import numpy as np
model = from_pretrained_keras("keras-io/timeseries_transformer_classification")
def detect_issue(df):
#df = pd.read_csv('sample.csv',header=None)
pred = model.predict(df)[0]
problem = 'No problem'
if(np.argmax(pred)==1):
problem = 'Engine problem'
return problem, pred[1]
iface = gr.Interface(detect_issue,"dataframe",
outputs=[
gr.outputs.Textbox(label="Engine issue"),
gr.outputs.Textbox(label="Engine issue score")], examples=["sample.csv"]
# examples = ["sample.csv"],
)
iface.launch()