Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,712 Bytes
badacd0 11554c5 5eea811 11554c5 9e24bfb 5eea811 11554c5 78c8e0b 5359939 11554c5 5359939 11554c5 5eea811 5359939 9e24bfb 78c8e0b 11554c5 5359939 9e24bfb 78c8e0b 11554c5 5eea811 5531e62 5eea811 11554c5 2c49741 11554c5 5eea811 11554c5 5359939 11554c5 5eea811 963d046 e2447ec 5eea811 11554c5 5eea811 11554c5 5359939 11554c5 963d046 5eea811 2351462 badacd0 2351462 5eea811 2351462 5eea811 5359939 963d046 5359939 e2447ec 5359939 badacd0 5359939 a71f061 5359939 a71f061 5359939 55fc385 5359939 55fc385 5359939 a71f061 5359939 a71f061 5359939 a71f061 e2447ec 963d046 e2447ec a71f061 5359939 a71f061 5359939 badacd0 11554c5 badacd0 11554c5 badacd0 11554c5 badacd0 5eea811 badacd0 5359939 badacd0 5359939 badacd0 5359939 badacd0 5359939 badacd0 5359939 badacd0 630a074 badacd0 5359939 badacd0 5359939 a71f061 badacd0 a71f061 badacd0 a71f061 5359939 badacd0 5359939 badacd0 11554c5 badacd0 a71f061 badacd0 11554c5 badacd0 a71f061 badacd0 a71f061 5359939 5eea811 11554c5 badacd0 11554c5 badacd0 491daf7 badacd0 491daf7 badacd0 11554c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 |
from typing import List, Literal
from pathlib import Path
from functools import partial
import spaces
import gradio as gr
import numpy as np
import torch
from torchvision.datasets.utils import download_and_extract_archive
from einops import repeat
from omegaconf import OmegaConf
from algorithms.dfot import DFoTVideoPose
from history_guidance import HistoryGuidance
from utils.ckpt_utils import download_pretrained
from datasets.video.utils.io import read_video
from export import export_to_video, export_to_gif, export_images_to_gif
from camera_pose import extend_poses, CameraPose
from scipy.spatial.transform import Rotation, Slerp
DATASET_URL = "https://huggingface.co/kiwhansong/DFoT/resolve/main/datasets/RealEstate10K_Tiny.tar.gz"
DATASET_DIR = Path("data/real-estate-10k-tiny")
LONG_LENGTH = 10 # seconds
NAVIGATION_FPS = 3
if not DATASET_DIR.exists():
DATASET_DIR.mkdir(parents=True)
download_and_extract_archive(
DATASET_URL,
DATASET_DIR.parent,
remove_finished=True,
)
metadata = torch.load(DATASET_DIR / "metadata" / "test.pt", weights_only=False)
video_list = [
read_video(path).permute(0, 3, 1, 2) / 255.0 for path in metadata["video_paths"]
]
poses_list = [
torch.cat(
[
poses[:, :4],
poses[:, 6:],
],
dim=-1,
).to(torch.float32)
for poses in (
torch.load(DATASET_DIR / "test_poses" / f"{path.stem}.pt")
for path in metadata["video_paths"]
)
]
first_frame_list = [
(video[0] * 255).permute(1, 2, 0).numpy().clip(0, 255).astype("uint8")
for video in video_list
]
gif_paths = []
for idx, video, path in zip(
range(len(video_list)), video_list, metadata["video_paths"]
):
indices = torch.linspace(0, video.size(0) - 1, 16, dtype=torch.long)
gif_paths.append(export_to_gif(video[indices], fps=8))
# pylint: disable-next=no-value-for-parameter
dfot = DFoTVideoPose.load_from_checkpoint(
checkpoint_path=download_pretrained("pretrained:DFoT_RE10K.ckpt"),
map_location="cpu",
cfg=OmegaConf.load("config.yaml"),
).eval()
dfot.to("cuda")
def prepare_long_gt_video(idx: int):
video = video_list[idx]
indices = torch.linspace(0, video.size(0) - 1, 200, dtype=torch.long)
return export_to_video(video[indices], fps=200 // LONG_LENGTH)
def prepare_short_gt_video(idx: int):
video = video_list[idx]
indices = torch.linspace(0, video.size(0) - 1, 8, dtype=torch.long)
video = (
(video[indices].permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
)
return [video[i] for i in range(video.shape[0])]
def video_to_gif_and_images(video, indices):
masked_video = [
image if i in indices else np.zeros_like(image) for i, image in enumerate(video)
]
return [(export_images_to_gif(masked_video), "GIF")] + [
(image, f"t={i}" if i in indices else "")
for i, image in enumerate(masked_video)
]
def get_duration_single_image_to_long_video(idx: int, guidance_scale: float, fps: int, progress:gr.Progress):
return 30 * fps
@spaces.GPU(duration=get_duration_single_image_to_long_video)
@torch.autocast("cuda")
@torch.no_grad()
def single_image_to_long_video(
idx: int, guidance_scale: float, fps: int, progress=gr.Progress(track_tqdm=True)
):
video = video_list[idx]
poses = poses_list[idx]
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * fps, dtype=torch.long)
xs = video[indices].unsqueeze(0).to("cuda")
conditions = poses[indices].unsqueeze(0).to("cuda")
dfot.cfg.tasks.prediction.history_guidance.guidance_scale = guidance_scale
dfot.cfg.tasks.prediction.keyframe_density = 12 / (fps * LONG_LENGTH)
# dfot.cfg.tasks.interpolation.history_guidance.guidance_scale = guidance_scale
gen_video = dfot._unnormalize_x(
dfot._predict_videos(
dfot._normalize_x(xs),
conditions,
)
)
return export_to_video(gen_video[0].detach().cpu(), fps=fps)
@spaces.GPU(duration=30)
@torch.autocast("cuda")
@torch.no_grad()
def any_images_to_short_video(
scene_idx: int,
image_indices: List[int],
guidance_scale: float,
):
video = video_list[scene_idx]
poses = poses_list[scene_idx]
indices = torch.linspace(0, video.size(0) - 1, 8, dtype=torch.long)
xs = video[indices].unsqueeze(0).to("cuda")
conditions = poses[indices].unsqueeze(0).to("cuda")
pbar = CustomProgressBar(
gr.Progress(track_tqdm=True).tqdm(
iterable=None,
desc="Sampling with DFoT",
total=dfot.sampling_timesteps,
)
)
gen_video = dfot._unnormalize_x(
dfot._sample_sequence(
batch_size=1,
context=dfot._normalize_x(xs),
context_mask=torch.tensor([i in image_indices for i in range(8)])
.unsqueeze(0)
.to("cuda"),
conditions=conditions,
history_guidance=HistoryGuidance.vanilla(
guidance_scale=guidance_scale,
visualize=False,
),
pbar=pbar,
)[0]
)
gen_video = (
(gen_video[0].detach().cpu().permute(0, 2, 3, 1) * 255)
.clamp(0, 255)
.to(torch.uint8)
.numpy()
)
return video_to_gif_and_images([image for image in gen_video], list(range(8)))
class CustomProgressBar:
def __init__(self, pbar):
self.pbar = pbar
def set_postfix(self, **kwargs):
pass
def __getattr__(self, attr):
return getattr(self.pbar, attr)
def get_duration_navigate_video(video: torch.Tensor,
poses: torch.Tensor,
x_angle: float,
y_angle: float,
distance: float
):
if abs(x_angle) < 30 and abs(y_angle) < 30 and distance < 150:
return 45
return 30
@spaces.GPU(duration=45)
@torch.autocast("cuda")
@torch.no_grad()
def navigate_video(
video: torch.Tensor,
poses: torch.Tensor,
x_angle: float,
y_angle: float,
distance: float,
):
n_context_frames = min(len(video), 4)
n_prediction_frames = 8 - n_context_frames
pbar = CustomProgressBar(
gr.Progress(track_tqdm=True).tqdm(
iterable=None,
desc=f"Predicting next {n_prediction_frames} frames with DFoT",
total=dfot.sampling_timesteps,
)
)
xs = dfot._normalize_x(video.clone().unsqueeze(0).to("cuda"))
conditions = poses.clone().unsqueeze(0).to("cuda")
conditions = extend_poses(
conditions,
n=n_prediction_frames,
x_angle=x_angle,
y_angle=y_angle,
distance=distance,
)
context_mask = (
torch.cat(
[
torch.ones(1, n_context_frames) * (1 if n_context_frames == 1 else 2),
torch.zeros(1, n_prediction_frames),
],
dim=-1,
)
.long()
.to("cuda")
)
next_video = (
dfot._unnormalize_x(
dfot._sample_sequence(
batch_size=1,
context=torch.cat(
[
xs[:, -n_context_frames:],
torch.zeros(
1,
n_prediction_frames,
*xs.shape[2:],
device=xs.device,
dtype=xs.dtype,
),
],
dim=1,
),
context_mask=context_mask,
conditions=conditions[:, -8:],
history_guidance=HistoryGuidance.smart(
x_angle=x_angle,
y_angle=y_angle,
distance=distance,
visualize=False,
),
pbar=pbar,
)[0]
)[0][n_context_frames:]
.detach()
.cpu()
)
gen_video = torch.cat([video, next_video], dim=0)
poses = conditions[0].detach().cpu()
images = (gen_video.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
return (
gen_video,
poses,
images[-1],
export_to_video(gen_video, fps=NAVIGATION_FPS),
[(image, f"t={i}") for i, image in enumerate(images)],
)
def undo_navigation(
video: torch.Tensor,
poses: torch.Tensor,
):
if len(video) > 8:
video = video[:-4]
poses = poses[:-4]
elif len(video) == 8:
video = video[:1]
poses = poses[:1]
else:
gr.Warning("You have no moves left to undo!")
images = (video.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
return (
video,
poses,
images[-1],
export_to_video(video, fps=NAVIGATION_FPS),
[(image, f"t={i}") for i, image in enumerate(images)],
)
def _interpolate_conditions(conditions, indices):
"""
Interpolate conditions to fill out missing frames
Aegs:
conditions (Tensor): conditions (B, T, C)
indices (Tensor): indices of keyframes (T')
"""
assert indices[0].item() == 0
assert indices[-1].item() == conditions.shape[1] - 1
indices = indices.cpu().numpy()
batch_size, n_tokens, _ = conditions.shape
t = np.linspace(0, n_tokens - 1, n_tokens)
key_conditions = conditions[:, indices]
poses = CameraPose.from_vectors(key_conditions)
extrinsics = poses.extrinsics().cpu().numpy()
ps = extrinsics[..., :3, 3]
rs = extrinsics[..., :3, :3].reshape(batch_size, -1, 3, 3)
interp_extrinsics = np.zeros((batch_size, n_tokens, 3, 4))
for i in range(batch_size):
slerp = Slerp(indices, Rotation.from_matrix(rs[i]))
interp_extrinsics[i, :, :3, :3] = slerp(t).as_matrix()
for j in range(3):
interp_extrinsics[i, :, j, 3] = np.interp(t, indices, ps[i, :, j])
interp_extrinsics = torch.from_numpy(interp_extrinsics.astype(np.float32))
interp_extrinsics = interp_extrinsics.to(conditions.device).flatten(2)
conditions = repeat(key_conditions[:, 0, :4], "b c -> b t c", t=n_tokens)
conditions = torch.cat([conditions.clone(), interp_extrinsics], dim=-1)
return conditions
def _interpolate_between(
xs: torch.Tensor,
conditions: torch.Tensor,
interpolation_factor: int,
progress=gr.Progress(track_tqdm=True),
):
l = xs.shape[1]
final_l = (l - 1) * interpolation_factor + 1
x_shape = xs.shape[2:]
context = torch.zeros(
(
1,
final_l,
*x_shape,
),
device=xs.device,
dtype=xs.dtype,
)
long_conditions = torch.zeros(
(1, final_l, *conditions.shape[2:]),
device=conditions.device,
dtype=conditions.dtype,
)
context_mask = torch.zeros(
(1, final_l),
device=xs.device,
dtype=torch.bool,
)
context_indices = torch.arange(
0, final_l, interpolation_factor, device=conditions.device
)
context[:, context_indices] = xs
long_conditions[:, context_indices] = conditions
context_mask[:, ::interpolation_factor] = True
long_conditions = _interpolate_conditions(
long_conditions,
context_indices,
)
xs = dfot._interpolate_videos(
context,
context_mask,
conditions=long_conditions,
)
return xs, long_conditions
def get_duration_smooth_navigation(
video: torch.Tensor, poses: torch.Tensor, interpolation_factor: int, progress: gr.Progress
):
length = (len(video) - 1) * interpolation_factor + 1
return 2 * length
@spaces.GPU(duration=get_duration_smooth_navigation)
@torch.autocast("cuda")
@torch.no_grad()
def smooth_navigation(
video: torch.Tensor,
poses: torch.Tensor,
interpolation_factor: int,
progress=gr.Progress(track_tqdm=True),
):
if len(video) < 8:
gr.Warning("Navigate first before applying temporal super-resolution!")
else:
video, poses = _interpolate_between(
dfot._normalize_x(video.clone().unsqueeze(0).to("cuda")),
poses.clone().unsqueeze(0).to("cuda"),
interpolation_factor,
)
video = dfot._unnormalize_x(video)[0].detach().cpu()
poses = poses[0].detach().cpu()
images = (video.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
return (
video,
poses,
images[-1],
export_to_video(video, fps=NAVIGATION_FPS * interpolation_factor),
[(image, f"t={i}") for i, image in enumerate(images)],
)
def render_demo1(s: Literal["Selection", "Generation"], idx: int, demo1_stage: gr.State, demo1_selected_index: gr.State):
gr.Markdown(
f"""
## Demo 1: Single Image → Long {LONG_LENGTH}-second Video
> #### _Diffusion Forcing Transformer can generate long videos via sliding window rollouts and temporal super-resolution._
""",
elem_classes=["task-title"]
)
match s:
case "Selection":
with gr.Group():
demo1_image_gallery = gr.Gallery(
height=300,
value=first_frame_list,
label="Select an Image to Animate",
columns=[8],
selected_index=idx,
allow_preview=False,
preview=False,
)
@demo1_image_gallery.select(
inputs=None, outputs=[demo1_stage, demo1_selected_index]
)
def move_to_generation(selection: gr.SelectData):
return "Generation", selection.index
case "Generation":
with gr.Row():
gr.Image(
value=first_frame_list[idx],
label="Input Image",
width=256,
height=256,
)
gr.Video(
value=prepare_long_gt_video(idx),
label="Ground Truth Video",
width=256,
height=256,
autoplay=True,
loop=True,
)
demo1_video = gr.Video(
label="Generated Video",
width=256,
height=256,
autoplay=True,
loop=True,
show_share_button=True,
show_download_button=True,
)
gr.Markdown("### Generation Controls ↓")
demo1_guidance_scale = gr.Slider(
minimum=1,
maximum=6,
value=4,
step=0.5,
label="History Guidance Scale",
info="Without history guidance: 1.0; Recommended: 4.0",
interactive=True,
)
demo1_fps = gr.Slider(
minimum=4,
maximum=20,
value=4,
step=1,
label="FPS",
info=f"A {LONG_LENGTH}-second video will be generated at this FPS; Decrease for faster generation; Increase for a smoother video",
interactive=True,
)
gr.Button("Generate Video", variant="primary").click(
fn=single_image_to_long_video,
inputs=[
demo1_selected_index,
demo1_guidance_scale,
demo1_fps,
],
outputs=demo1_video,
)
def render_demo2(s: Literal["Scene", "Image", "Generation"], scene_idx: int, image_indices: List[int], demo2_stage: gr.State, demo2_selected_scene_index: gr.State, demo2_selected_image_indices: gr.State):
gr.Markdown(
"""
## Demo 2: Any Number of Images → Short 2-second Video
> #### _Diffusion Forcing Transformer is a flexible model that can generate videos given variable number of context frames._
""",
elem_classes=["task-title"]
)
match s:
case "Scene":
with gr.Group():
demo2_scene_gallery = gr.Gallery(
height=300,
value=gif_paths,
label="Select a Scene to Generate Video",
columns=[8],
selected_index=scene_idx,
allow_preview=False,
preview=False,
)
@demo2_scene_gallery.select(
inputs=None, outputs=[demo2_stage, demo2_selected_scene_index]
)
def move_to_image_selection(selection: gr.SelectData):
return "Image", selection.index
case "Image":
with gr.Group():
demo2_image_gallery = gr.Gallery(
height=150,
value=[
(image, f"t={i}")
for i, image in enumerate(
prepare_short_gt_video(scene_idx)
)
],
label="Select Input Images",
columns=[8],
)
demo2_selector = gr.CheckboxGroup(
label="Select Any Number of Input Images",
info="Image-to-Video: Select t=0; Interpolation: Select t=0 and t=7",
choices=[(f"t={i}", i) for i in range(8)],
value=[],
)
demo2_image_select_button = gr.Button(
"Next Step", variant="primary"
)
@demo2_image_select_button.click(
inputs=[demo2_selector],
outputs=[demo2_stage, demo2_selected_image_indices],
)
def generate_video(selected_indices):
if len(selected_indices) == 0:
gr.Warning("Select at least one image!")
return "Image", []
else:
return "Generation", selected_indices
case "Generation":
with gr.Group():
gt_video = prepare_short_gt_video(scene_idx)
demo2_input_image_gallery = gr.Gallery(
height=150,
value=video_to_gif_and_images(gt_video, image_indices),
label="Input Images",
columns=[9],
)
demo2_generated_gallery = gr.Gallery(
height=150,
value=[],
label="Generated Video",
columns=[9],
)
demo2_ground_truth_gallery = gr.Gallery(
height=150,
value=video_to_gif_and_images(gt_video, list(range(8))),
label="Ground Truth Video",
columns=[9],
)
gr.Markdown("### Generation Controls ↓")
demo2_guidance_scale = gr.Slider(
minimum=1,
maximum=6,
value=4,
step=0.5,
label="History Guidance Scale",
info="Without history guidance: 1.0; Recommended: 4.0",
interactive=True,
)
gr.Button("Generate Video", variant="primary").click(
fn=any_images_to_short_video,
inputs=[
demo2_selected_scene_index,
demo2_selected_image_indices,
demo2_guidance_scale,
],
outputs=demo2_generated_gallery,
)
def render_demo3(
s: Literal["Selection", "Generation"],
idx: int,
demo3_stage: gr.State,
demo3_selected_index: gr.State,
demo3_current_video: gr.State,
demo3_current_poses: gr.State
):
gr.Markdown(
"""
## Demo 3: Single Image → Extremely Long Video _(Navigate with Your Camera Movements!)_
> #### _History Guidance significantly improves quality and temporal consistency, enabling stable rollouts for extremely long videos._
""",
elem_classes=["task-title"]
)
match s:
case "Selection":
with gr.Group():
demo3_image_gallery = gr.Gallery(
height=300,
value=first_frame_list,
label="Select an Image to Start Navigation",
columns=[8],
selected_index=idx,
allow_preview=False,
preview=False,
)
@demo3_image_gallery.select(
inputs=None, outputs=[demo3_stage, demo3_selected_index, demo3_current_video, demo3_current_poses]
)
def move_to_generation(selection: gr.SelectData):
idx = selection.index
return (
"Generation",
idx,
video_list[idx][:1],
poses_list[idx][:1],
)
case "Generation":
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
demo3_current_view = gr.Image(
value=first_frame_list[idx],
label="Current View",
width=256,
height=256,
)
demo3_video = gr.Video(
label="Generated Video",
width=256,
height=256,
autoplay=True,
loop=True,
show_share_button=True,
show_download_button=True,
)
demo3_generated_gallery = gr.Gallery(
value=[],
label="Generated Frames",
columns=[6],
)
with gr.Column():
gr.Markdown("### Navigation Controls ↓")
with gr.Accordion("Instructions", open=False):
gr.Markdown("""
- **The model will predict the next few frames based on your camera movements. Repeat the process to continue navigating through the scene.**
- **At the end of your navigation, apply temporal super-resolution to increase the FPS,** also utilizing the DFoT model.
- The most suitable history guidance scheme will be automatically selected based on your camera movements.
""")
with gr.Tab("Basic", elem_id="basic-controls-tab"):
with gr.Group():
gr.Markdown("_**Select a direction to move:**_")
with gr.Row(elem_id="basic-controls"):
gr.Button(
"↰-60°\nVeer",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=-60,
distance=0,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Button(
"↖-30°\nTurn",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=-30,
distance=50,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Button(
"↑0°\nAhead",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=0,
distance=100,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Button(
"↗30°\nTurn",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=30,
distance=50,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Button(
"↱\n60° Veer",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=60,
distance=0,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
with gr.Tab("Advanced", elem_id="advanced-controls-tab"):
with gr.Group():
gr.Markdown("_**Select angles and distance:**_")
demo3_y_angle = gr.Slider(
minimum=-90,
maximum=90,
value=0,
step=10,
label="Horizontal Angle",
interactive=True,
)
demo3_x_angle = gr.Slider(
minimum=-40,
maximum=40,
value=0,
step=10,
label="Vertical Angle",
interactive=True,
)
demo3_distance = gr.Slider(
minimum=0,
maximum=200,
value=100,
step=10,
label="Distance",
interactive=True,
)
gr.Button(
"Generate Next Move", variant="primary"
).click(
fn=navigate_video,
inputs=[
demo3_current_video,
demo3_current_poses,
demo3_x_angle,
demo3_y_angle,
demo3_distance,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Markdown("---")
with gr.Group():
gr.Markdown("_You can always undo your last move:_")
gr.Button("Undo Last Move", variant="huggingface").click(
fn=undo_navigation,
inputs=[demo3_current_video, demo3_current_poses],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
with gr.Group():
gr.Markdown(
"_At the end, apply temporal super-resolution to obtain a smoother video:_"
)
demo3_interpolation_factor = gr.Slider(
minimum=2,
maximum=10,
value=2,
step=1,
label="By a Factor of",
interactive=True,
)
gr.Button("Smooth Out Video", variant="huggingface").click(
fn=smooth_navigation,
inputs=[
demo3_current_video,
demo3_current_poses,
demo3_interpolation_factor,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
# Create the Gradio Blocks
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
gr.HTML(
"""
<style>
[data-tab-id="task-1"], [data-tab-id="task-2"], [data-tab-id="task-3"] {
font-size: 16px !important;
font-weight: bold;
}
#page-title h1 {
color: #0D9488 !important;
}
.task-title h2 {
color: #F59E0C !important;
}
.header-button-row {
gap: 4px !important;
}
.header-button-row div {
width: 131.0px !important;
}
.header-button-column {
width: 131.0px !important;
gap: 5px !important;
}
.header-button a {
border: 1px solid #e4e4e7;
}
.header-button .button-icon {
margin-right: 8px;
}
.demo-button-column .gap {
gap: 5px !important;
}
#basic-controls {
column-gap: 0px;
}
#basic-controls-tab {
padding: 0px;
}
#advanced-controls-tab {
padding: 0px;
}
#selected-demo-button {
color: #F59E0C;
text-decoration: underline;
}
.demo-button {
text-align: left !important;
display: block !important;
}
</style>
"""
)
demo_idx = gr.State(value=1)
with gr.Sidebar():
gr.Markdown("# Diffusion Forcing Transformer with History Guidance", elem_id="page-title")
gr.Markdown(
"### Official Interactive Demo for [_History-Guided Video Diffusion_](https://arxiv.org/abs/2502.06764)"
)
gr.Markdown("---")
gr.Markdown("#### Links ↓")
with gr.Row(elem_classes=["header-button-row"]):
with gr.Column(elem_classes=["header-button-column"], min_width=0):
gr.Button(
value="Website",
link="https://boyuan.space/history-guidance",
icon="https://simpleicons.org/icons/googlechrome.svg",
elem_classes=["header-button"],
size="md",
min_width=0,
)
gr.Button(
value="Paper",
link="https://arxiv.org/abs/2502.06764",
icon="https://simpleicons.org/icons/arxiv.svg",
elem_classes=["header-button"],
size="md",
min_width=0,
)
with gr.Column(elem_classes=["header-button-column"], min_width=0):
gr.Button(
value="Code",
link="https://github.com/kwsong0113/diffusion-forcing-transformer",
icon="https://simpleicons.org/icons/github.svg",
elem_classes=["header-button"],
size="md",
min_width=0,
)
gr.Button(
value="Weights",
link="https://huggingface.co/kiwhansong/DFoT",
icon="https://simpleicons.org/icons/huggingface.svg",
elem_classes=["header-button"],
size="md",
min_width=0,
)
gr.Markdown("---")
gr.Markdown("#### Choose a Demo ↓")
with gr.Column(elem_classes=["demo-button-column"]):
@gr.render(inputs=[demo_idx])
def render_demo_tabs(idx):
demo_tab_button1 = gr.Button(
"1: Image → Long Video",
size="md", elem_classes=["demo-button"], **{"elem_id": "selected-demo-button"} if idx == 1 else {}
).click(
fn=lambda: 1,
outputs=demo_idx
)
demo_tab_button2 = gr.Button(
"2: Any # of Images → Short Video",
size="md", elem_classes=["demo-button"], **{"elem_id": "selected-demo-button"} if idx == 2 else {}
).click(
fn=lambda: 2,
outputs=demo_idx
)
demo_tab_button3 = gr.Button(
"3: Image → Extremely Long Video",
size="md", elem_classes=["demo-button"], **{"elem_id": "selected-demo-button"} if idx == 3 else {}
).click(
fn=lambda: 3,
outputs=demo_idx
)
gr.Markdown("---")
gr.Markdown("#### Troubleshooting ↓")
with gr.Group():
with gr.Accordion("Error or Unexpected Results?", open=False):
gr.Markdown("Please try again after refreshing the page and ensure you do not click the same button multiple times.")
with gr.Accordion("Too Slow or No GPU Allocation?", open=False):
gr.Markdown(
"Consider running the demo locally (click the dots in the top-right corner). Alternatively, you can subscribe to Hugging Face Pro for an increased GPU quota."
)
demo1_stage = gr.State(value="Selection")
demo1_selected_index = gr.State(value=None)
demo2_stage = gr.State(value="Scene")
demo2_selected_scene_index = gr.State(value=None)
demo2_selected_image_indices = gr.State(value=[])
demo3_stage = gr.State(value="Selection")
demo3_selected_index = gr.State(value=None)
demo3_current_video = gr.State(value=None)
demo3_current_poses = gr.State(value=None)
@gr.render(inputs=[demo_idx, demo1_stage, demo1_selected_index, demo2_stage, demo2_selected_scene_index, demo2_selected_image_indices, demo3_stage, demo3_selected_index])
def render_demo(
_demo_idx, _demo1_stage, _demo1_selected_index, _demo2_stage, _demo2_selected_scene_index, _demo2_selected_image_indices, _demo3_stage, _demo3_selected_index
):
match _demo_idx:
case 1:
render_demo1(_demo1_stage, _demo1_selected_index, demo1_stage, demo1_selected_index)
case 2:
render_demo2(_demo2_stage, _demo2_selected_scene_index, _demo2_selected_image_indices,
demo2_stage, demo2_selected_scene_index, demo2_selected_image_indices)
case 3:
render_demo3(_demo3_stage, _demo3_selected_index, demo3_stage, demo3_selected_index, demo3_current_video, demo3_current_poses)
if __name__ == "__main__":
demo.launch()
|