kiwhansong's picture
slight gap between demo buttons
491daf7
from typing import List, Literal
from pathlib import Path
from functools import partial
import spaces
import gradio as gr
import numpy as np
import torch
from torchvision.datasets.utils import download_and_extract_archive
from einops import repeat
from omegaconf import OmegaConf
from algorithms.dfot import DFoTVideoPose
from history_guidance import HistoryGuidance
from utils.ckpt_utils import download_pretrained
from datasets.video.utils.io import read_video
from export import export_to_video, export_to_gif, export_images_to_gif
from camera_pose import extend_poses, CameraPose
from scipy.spatial.transform import Rotation, Slerp
DATASET_URL = "https://huggingface.co/kiwhansong/DFoT/resolve/main/datasets/RealEstate10K_Tiny.tar.gz"
DATASET_DIR = Path("data/real-estate-10k-tiny")
LONG_LENGTH = 10 # seconds
NAVIGATION_FPS = 3
if not DATASET_DIR.exists():
DATASET_DIR.mkdir(parents=True)
download_and_extract_archive(
DATASET_URL,
DATASET_DIR.parent,
remove_finished=True,
)
metadata = torch.load(DATASET_DIR / "metadata" / "test.pt", weights_only=False)
video_list = [
read_video(path).permute(0, 3, 1, 2) / 255.0 for path in metadata["video_paths"]
]
poses_list = [
torch.cat(
[
poses[:, :4],
poses[:, 6:],
],
dim=-1,
).to(torch.float32)
for poses in (
torch.load(DATASET_DIR / "test_poses" / f"{path.stem}.pt")
for path in metadata["video_paths"]
)
]
first_frame_list = [
(video[0] * 255).permute(1, 2, 0).numpy().clip(0, 255).astype("uint8")
for video in video_list
]
gif_paths = []
for idx, video, path in zip(
range(len(video_list)), video_list, metadata["video_paths"]
):
indices = torch.linspace(0, video.size(0) - 1, 16, dtype=torch.long)
gif_paths.append(export_to_gif(video[indices], fps=8))
# pylint: disable-next=no-value-for-parameter
dfot = DFoTVideoPose.load_from_checkpoint(
checkpoint_path=download_pretrained("pretrained:DFoT_RE10K.ckpt"),
map_location="cpu",
cfg=OmegaConf.load("config.yaml"),
).eval()
dfot.to("cuda")
def prepare_long_gt_video(idx: int):
video = video_list[idx]
indices = torch.linspace(0, video.size(0) - 1, 200, dtype=torch.long)
return export_to_video(video[indices], fps=200 // LONG_LENGTH)
def prepare_short_gt_video(idx: int):
video = video_list[idx]
indices = torch.linspace(0, video.size(0) - 1, 8, dtype=torch.long)
video = (
(video[indices].permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
)
return [video[i] for i in range(video.shape[0])]
def video_to_gif_and_images(video, indices):
masked_video = [
image if i in indices else np.zeros_like(image) for i, image in enumerate(video)
]
return [(export_images_to_gif(masked_video), "GIF")] + [
(image, f"t={i}" if i in indices else "")
for i, image in enumerate(masked_video)
]
def get_duration_single_image_to_long_video(idx: int, guidance_scale: float, fps: int, progress:gr.Progress):
return 30 * fps
@spaces.GPU(duration=get_duration_single_image_to_long_video)
@torch.autocast("cuda")
@torch.no_grad()
def single_image_to_long_video(
idx: int, guidance_scale: float, fps: int, progress=gr.Progress(track_tqdm=True)
):
video = video_list[idx]
poses = poses_list[idx]
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * fps, dtype=torch.long)
xs = video[indices].unsqueeze(0).to("cuda")
conditions = poses[indices].unsqueeze(0).to("cuda")
dfot.cfg.tasks.prediction.history_guidance.guidance_scale = guidance_scale
dfot.cfg.tasks.prediction.keyframe_density = 12 / (fps * LONG_LENGTH)
# dfot.cfg.tasks.interpolation.history_guidance.guidance_scale = guidance_scale
gen_video = dfot._unnormalize_x(
dfot._predict_videos(
dfot._normalize_x(xs),
conditions,
)
)
return export_to_video(gen_video[0].detach().cpu(), fps=fps)
@spaces.GPU(duration=30)
@torch.autocast("cuda")
@torch.no_grad()
def any_images_to_short_video(
scene_idx: int,
image_indices: List[int],
guidance_scale: float,
):
video = video_list[scene_idx]
poses = poses_list[scene_idx]
indices = torch.linspace(0, video.size(0) - 1, 8, dtype=torch.long)
xs = video[indices].unsqueeze(0).to("cuda")
conditions = poses[indices].unsqueeze(0).to("cuda")
pbar = CustomProgressBar(
gr.Progress(track_tqdm=True).tqdm(
iterable=None,
desc="Sampling with DFoT",
total=dfot.sampling_timesteps,
)
)
gen_video = dfot._unnormalize_x(
dfot._sample_sequence(
batch_size=1,
context=dfot._normalize_x(xs),
context_mask=torch.tensor([i in image_indices for i in range(8)])
.unsqueeze(0)
.to("cuda"),
conditions=conditions,
history_guidance=HistoryGuidance.vanilla(
guidance_scale=guidance_scale,
visualize=False,
),
pbar=pbar,
)[0]
)
gen_video = (
(gen_video[0].detach().cpu().permute(0, 2, 3, 1) * 255)
.clamp(0, 255)
.to(torch.uint8)
.numpy()
)
return video_to_gif_and_images([image for image in gen_video], list(range(8)))
class CustomProgressBar:
def __init__(self, pbar):
self.pbar = pbar
def set_postfix(self, **kwargs):
pass
def __getattr__(self, attr):
return getattr(self.pbar, attr)
def get_duration_navigate_video(video: torch.Tensor,
poses: torch.Tensor,
x_angle: float,
y_angle: float,
distance: float
):
if abs(x_angle) < 30 and abs(y_angle) < 30 and distance < 150:
return 45
return 30
@spaces.GPU(duration=45)
@torch.autocast("cuda")
@torch.no_grad()
def navigate_video(
video: torch.Tensor,
poses: torch.Tensor,
x_angle: float,
y_angle: float,
distance: float,
):
n_context_frames = min(len(video), 4)
n_prediction_frames = 8 - n_context_frames
pbar = CustomProgressBar(
gr.Progress(track_tqdm=True).tqdm(
iterable=None,
desc=f"Predicting next {n_prediction_frames} frames with DFoT",
total=dfot.sampling_timesteps,
)
)
xs = dfot._normalize_x(video.clone().unsqueeze(0).to("cuda"))
conditions = poses.clone().unsqueeze(0).to("cuda")
conditions = extend_poses(
conditions,
n=n_prediction_frames,
x_angle=x_angle,
y_angle=y_angle,
distance=distance,
)
context_mask = (
torch.cat(
[
torch.ones(1, n_context_frames) * (1 if n_context_frames == 1 else 2),
torch.zeros(1, n_prediction_frames),
],
dim=-1,
)
.long()
.to("cuda")
)
next_video = (
dfot._unnormalize_x(
dfot._sample_sequence(
batch_size=1,
context=torch.cat(
[
xs[:, -n_context_frames:],
torch.zeros(
1,
n_prediction_frames,
*xs.shape[2:],
device=xs.device,
dtype=xs.dtype,
),
],
dim=1,
),
context_mask=context_mask,
conditions=conditions[:, -8:],
history_guidance=HistoryGuidance.smart(
x_angle=x_angle,
y_angle=y_angle,
distance=distance,
visualize=False,
),
pbar=pbar,
)[0]
)[0][n_context_frames:]
.detach()
.cpu()
)
gen_video = torch.cat([video, next_video], dim=0)
poses = conditions[0].detach().cpu()
images = (gen_video.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
return (
gen_video,
poses,
images[-1],
export_to_video(gen_video, fps=NAVIGATION_FPS),
[(image, f"t={i}") for i, image in enumerate(images)],
)
def undo_navigation(
video: torch.Tensor,
poses: torch.Tensor,
):
if len(video) > 8:
video = video[:-4]
poses = poses[:-4]
elif len(video) == 8:
video = video[:1]
poses = poses[:1]
else:
gr.Warning("You have no moves left to undo!")
images = (video.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
return (
video,
poses,
images[-1],
export_to_video(video, fps=NAVIGATION_FPS),
[(image, f"t={i}") for i, image in enumerate(images)],
)
def _interpolate_conditions(conditions, indices):
"""
Interpolate conditions to fill out missing frames
Aegs:
conditions (Tensor): conditions (B, T, C)
indices (Tensor): indices of keyframes (T')
"""
assert indices[0].item() == 0
assert indices[-1].item() == conditions.shape[1] - 1
indices = indices.cpu().numpy()
batch_size, n_tokens, _ = conditions.shape
t = np.linspace(0, n_tokens - 1, n_tokens)
key_conditions = conditions[:, indices]
poses = CameraPose.from_vectors(key_conditions)
extrinsics = poses.extrinsics().cpu().numpy()
ps = extrinsics[..., :3, 3]
rs = extrinsics[..., :3, :3].reshape(batch_size, -1, 3, 3)
interp_extrinsics = np.zeros((batch_size, n_tokens, 3, 4))
for i in range(batch_size):
slerp = Slerp(indices, Rotation.from_matrix(rs[i]))
interp_extrinsics[i, :, :3, :3] = slerp(t).as_matrix()
for j in range(3):
interp_extrinsics[i, :, j, 3] = np.interp(t, indices, ps[i, :, j])
interp_extrinsics = torch.from_numpy(interp_extrinsics.astype(np.float32))
interp_extrinsics = interp_extrinsics.to(conditions.device).flatten(2)
conditions = repeat(key_conditions[:, 0, :4], "b c -> b t c", t=n_tokens)
conditions = torch.cat([conditions.clone(), interp_extrinsics], dim=-1)
return conditions
def _interpolate_between(
xs: torch.Tensor,
conditions: torch.Tensor,
interpolation_factor: int,
progress=gr.Progress(track_tqdm=True),
):
l = xs.shape[1]
final_l = (l - 1) * interpolation_factor + 1
x_shape = xs.shape[2:]
context = torch.zeros(
(
1,
final_l,
*x_shape,
),
device=xs.device,
dtype=xs.dtype,
)
long_conditions = torch.zeros(
(1, final_l, *conditions.shape[2:]),
device=conditions.device,
dtype=conditions.dtype,
)
context_mask = torch.zeros(
(1, final_l),
device=xs.device,
dtype=torch.bool,
)
context_indices = torch.arange(
0, final_l, interpolation_factor, device=conditions.device
)
context[:, context_indices] = xs
long_conditions[:, context_indices] = conditions
context_mask[:, ::interpolation_factor] = True
long_conditions = _interpolate_conditions(
long_conditions,
context_indices,
)
xs = dfot._interpolate_videos(
context,
context_mask,
conditions=long_conditions,
)
return xs, long_conditions
def get_duration_smooth_navigation(
video: torch.Tensor, poses: torch.Tensor, interpolation_factor: int, progress: gr.Progress
):
length = (len(video) - 1) * interpolation_factor + 1
return 2 * length
@spaces.GPU(duration=get_duration_smooth_navigation)
@torch.autocast("cuda")
@torch.no_grad()
def smooth_navigation(
video: torch.Tensor,
poses: torch.Tensor,
interpolation_factor: int,
progress=gr.Progress(track_tqdm=True),
):
if len(video) < 8:
gr.Warning("Navigate first before applying temporal super-resolution!")
else:
video, poses = _interpolate_between(
dfot._normalize_x(video.clone().unsqueeze(0).to("cuda")),
poses.clone().unsqueeze(0).to("cuda"),
interpolation_factor,
)
video = dfot._unnormalize_x(video)[0].detach().cpu()
poses = poses[0].detach().cpu()
images = (video.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8).numpy()
return (
video,
poses,
images[-1],
export_to_video(video, fps=NAVIGATION_FPS * interpolation_factor),
[(image, f"t={i}") for i, image in enumerate(images)],
)
def render_demo1(s: Literal["Selection", "Generation"], idx: int, demo1_stage: gr.State, demo1_selected_index: gr.State):
gr.Markdown(
f"""
## Demo 1: Single Image → Long {LONG_LENGTH}-second Video
> #### _Diffusion Forcing Transformer can generate long videos via sliding window rollouts and temporal super-resolution._
""",
elem_classes=["task-title"]
)
match s:
case "Selection":
with gr.Group():
demo1_image_gallery = gr.Gallery(
height=300,
value=first_frame_list,
label="Select an Image to Animate",
columns=[8],
selected_index=idx,
allow_preview=False,
preview=False,
)
@demo1_image_gallery.select(
inputs=None, outputs=[demo1_stage, demo1_selected_index]
)
def move_to_generation(selection: gr.SelectData):
return "Generation", selection.index
case "Generation":
with gr.Row():
gr.Image(
value=first_frame_list[idx],
label="Input Image",
width=256,
height=256,
)
gr.Video(
value=prepare_long_gt_video(idx),
label="Ground Truth Video",
width=256,
height=256,
autoplay=True,
loop=True,
)
demo1_video = gr.Video(
label="Generated Video",
width=256,
height=256,
autoplay=True,
loop=True,
show_share_button=True,
show_download_button=True,
)
gr.Markdown("### Generation Controls ↓")
demo1_guidance_scale = gr.Slider(
minimum=1,
maximum=6,
value=4,
step=0.5,
label="History Guidance Scale",
info="Without history guidance: 1.0; Recommended: 4.0",
interactive=True,
)
demo1_fps = gr.Slider(
minimum=4,
maximum=20,
value=4,
step=1,
label="FPS",
info=f"A {LONG_LENGTH}-second video will be generated at this FPS; Decrease for faster generation; Increase for a smoother video",
interactive=True,
)
gr.Button("Generate Video", variant="primary").click(
fn=single_image_to_long_video,
inputs=[
demo1_selected_index,
demo1_guidance_scale,
demo1_fps,
],
outputs=demo1_video,
)
def render_demo2(s: Literal["Scene", "Image", "Generation"], scene_idx: int, image_indices: List[int], demo2_stage: gr.State, demo2_selected_scene_index: gr.State, demo2_selected_image_indices: gr.State):
gr.Markdown(
"""
## Demo 2: Any Number of Images → Short 2-second Video
> #### _Diffusion Forcing Transformer is a flexible model that can generate videos given variable number of context frames._
""",
elem_classes=["task-title"]
)
match s:
case "Scene":
with gr.Group():
demo2_scene_gallery = gr.Gallery(
height=300,
value=gif_paths,
label="Select a Scene to Generate Video",
columns=[8],
selected_index=scene_idx,
allow_preview=False,
preview=False,
)
@demo2_scene_gallery.select(
inputs=None, outputs=[demo2_stage, demo2_selected_scene_index]
)
def move_to_image_selection(selection: gr.SelectData):
return "Image", selection.index
case "Image":
with gr.Group():
demo2_image_gallery = gr.Gallery(
height=150,
value=[
(image, f"t={i}")
for i, image in enumerate(
prepare_short_gt_video(scene_idx)
)
],
label="Select Input Images",
columns=[8],
)
demo2_selector = gr.CheckboxGroup(
label="Select Any Number of Input Images",
info="Image-to-Video: Select t=0; Interpolation: Select t=0 and t=7",
choices=[(f"t={i}", i) for i in range(8)],
value=[],
)
demo2_image_select_button = gr.Button(
"Next Step", variant="primary"
)
@demo2_image_select_button.click(
inputs=[demo2_selector],
outputs=[demo2_stage, demo2_selected_image_indices],
)
def generate_video(selected_indices):
if len(selected_indices) == 0:
gr.Warning("Select at least one image!")
return "Image", []
else:
return "Generation", selected_indices
case "Generation":
with gr.Group():
gt_video = prepare_short_gt_video(scene_idx)
demo2_input_image_gallery = gr.Gallery(
height=150,
value=video_to_gif_and_images(gt_video, image_indices),
label="Input Images",
columns=[9],
)
demo2_generated_gallery = gr.Gallery(
height=150,
value=[],
label="Generated Video",
columns=[9],
)
demo2_ground_truth_gallery = gr.Gallery(
height=150,
value=video_to_gif_and_images(gt_video, list(range(8))),
label="Ground Truth Video",
columns=[9],
)
gr.Markdown("### Generation Controls ↓")
demo2_guidance_scale = gr.Slider(
minimum=1,
maximum=6,
value=4,
step=0.5,
label="History Guidance Scale",
info="Without history guidance: 1.0; Recommended: 4.0",
interactive=True,
)
gr.Button("Generate Video", variant="primary").click(
fn=any_images_to_short_video,
inputs=[
demo2_selected_scene_index,
demo2_selected_image_indices,
demo2_guidance_scale,
],
outputs=demo2_generated_gallery,
)
def render_demo3(
s: Literal["Selection", "Generation"],
idx: int,
demo3_stage: gr.State,
demo3_selected_index: gr.State,
demo3_current_video: gr.State,
demo3_current_poses: gr.State
):
gr.Markdown(
"""
## Demo 3: Single Image → Extremely Long Video _(Navigate with Your Camera Movements!)_
> #### _History Guidance significantly improves quality and temporal consistency, enabling stable rollouts for extremely long videos._
""",
elem_classes=["task-title"]
)
match s:
case "Selection":
with gr.Group():
demo3_image_gallery = gr.Gallery(
height=300,
value=first_frame_list,
label="Select an Image to Start Navigation",
columns=[8],
selected_index=idx,
allow_preview=False,
preview=False,
)
@demo3_image_gallery.select(
inputs=None, outputs=[demo3_stage, demo3_selected_index, demo3_current_video, demo3_current_poses]
)
def move_to_generation(selection: gr.SelectData):
idx = selection.index
return (
"Generation",
idx,
video_list[idx][:1],
poses_list[idx][:1],
)
case "Generation":
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
demo3_current_view = gr.Image(
value=first_frame_list[idx],
label="Current View",
width=256,
height=256,
)
demo3_video = gr.Video(
label="Generated Video",
width=256,
height=256,
autoplay=True,
loop=True,
show_share_button=True,
show_download_button=True,
)
demo3_generated_gallery = gr.Gallery(
value=[],
label="Generated Frames",
columns=[6],
)
with gr.Column():
gr.Markdown("### Navigation Controls ↓")
with gr.Accordion("Instructions", open=False):
gr.Markdown("""
- **The model will predict the next few frames based on your camera movements. Repeat the process to continue navigating through the scene.**
- **At the end of your navigation, apply temporal super-resolution to increase the FPS,** also utilizing the DFoT model.
- The most suitable history guidance scheme will be automatically selected based on your camera movements.
""")
with gr.Tab("Basic", elem_id="basic-controls-tab"):
with gr.Group():
gr.Markdown("_**Select a direction to move:**_")
with gr.Row(elem_id="basic-controls"):
gr.Button(
"↰-60°\nVeer",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=-60,
distance=0,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Button(
"↖-30°\nTurn",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=-30,
distance=50,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Button(
"↑0°\nAhead",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=0,
distance=100,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Button(
"↗30°\nTurn",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=30,
distance=50,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Button(
"↱\n60° Veer",
size="sm",
min_width=0,
variant="primary",
).click(
fn=partial(
navigate_video,
x_angle=0,
y_angle=60,
distance=0,
),
inputs=[
demo3_current_video,
demo3_current_poses,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
with gr.Tab("Advanced", elem_id="advanced-controls-tab"):
with gr.Group():
gr.Markdown("_**Select angles and distance:**_")
demo3_y_angle = gr.Slider(
minimum=-90,
maximum=90,
value=0,
step=10,
label="Horizontal Angle",
interactive=True,
)
demo3_x_angle = gr.Slider(
minimum=-40,
maximum=40,
value=0,
step=10,
label="Vertical Angle",
interactive=True,
)
demo3_distance = gr.Slider(
minimum=0,
maximum=200,
value=100,
step=10,
label="Distance",
interactive=True,
)
gr.Button(
"Generate Next Move", variant="primary"
).click(
fn=navigate_video,
inputs=[
demo3_current_video,
demo3_current_poses,
demo3_x_angle,
demo3_y_angle,
demo3_distance,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
gr.Markdown("---")
with gr.Group():
gr.Markdown("_You can always undo your last move:_")
gr.Button("Undo Last Move", variant="huggingface").click(
fn=undo_navigation,
inputs=[demo3_current_video, demo3_current_poses],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
with gr.Group():
gr.Markdown(
"_At the end, apply temporal super-resolution to obtain a smoother video:_"
)
demo3_interpolation_factor = gr.Slider(
minimum=2,
maximum=10,
value=2,
step=1,
label="By a Factor of",
interactive=True,
)
gr.Button("Smooth Out Video", variant="huggingface").click(
fn=smooth_navigation,
inputs=[
demo3_current_video,
demo3_current_poses,
demo3_interpolation_factor,
],
outputs=[
demo3_current_video,
demo3_current_poses,
demo3_current_view,
demo3_video,
demo3_generated_gallery,
],
)
# Create the Gradio Blocks
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
gr.HTML(
"""
<style>
[data-tab-id="task-1"], [data-tab-id="task-2"], [data-tab-id="task-3"] {
font-size: 16px !important;
font-weight: bold;
}
#page-title h1 {
color: #0D9488 !important;
}
.task-title h2 {
color: #F59E0C !important;
}
.header-button-row {
gap: 4px !important;
}
.header-button-row div {
width: 131.0px !important;
}
.header-button-column {
width: 131.0px !important;
gap: 5px !important;
}
.header-button a {
border: 1px solid #e4e4e7;
}
.header-button .button-icon {
margin-right: 8px;
}
.demo-button-column .gap {
gap: 5px !important;
}
#basic-controls {
column-gap: 0px;
}
#basic-controls-tab {
padding: 0px;
}
#advanced-controls-tab {
padding: 0px;
}
#selected-demo-button {
color: #F59E0C;
text-decoration: underline;
}
.demo-button {
text-align: left !important;
display: block !important;
}
</style>
"""
)
demo_idx = gr.State(value=1)
with gr.Sidebar():
gr.Markdown("# Diffusion Forcing Transformer with History Guidance", elem_id="page-title")
gr.Markdown(
"### Official Interactive Demo for [_History-Guided Video Diffusion_](https://arxiv.org/abs/2502.06764)"
)
gr.Markdown("---")
gr.Markdown("#### Links ↓")
with gr.Row(elem_classes=["header-button-row"]):
with gr.Column(elem_classes=["header-button-column"], min_width=0):
gr.Button(
value="Website",
link="https://boyuan.space/history-guidance",
icon="https://simpleicons.org/icons/googlechrome.svg",
elem_classes=["header-button"],
size="md",
min_width=0,
)
gr.Button(
value="Paper",
link="https://arxiv.org/abs/2502.06764",
icon="https://simpleicons.org/icons/arxiv.svg",
elem_classes=["header-button"],
size="md",
min_width=0,
)
with gr.Column(elem_classes=["header-button-column"], min_width=0):
gr.Button(
value="Code",
link="https://github.com/kwsong0113/diffusion-forcing-transformer",
icon="https://simpleicons.org/icons/github.svg",
elem_classes=["header-button"],
size="md",
min_width=0,
)
gr.Button(
value="Weights",
link="https://huggingface.co/kiwhansong/DFoT",
icon="https://simpleicons.org/icons/huggingface.svg",
elem_classes=["header-button"],
size="md",
min_width=0,
)
gr.Markdown("---")
gr.Markdown("#### Choose a Demo ↓")
with gr.Column(elem_classes=["demo-button-column"]):
@gr.render(inputs=[demo_idx])
def render_demo_tabs(idx):
demo_tab_button1 = gr.Button(
"1: Image → Long Video",
size="md", elem_classes=["demo-button"], **{"elem_id": "selected-demo-button"} if idx == 1 else {}
).click(
fn=lambda: 1,
outputs=demo_idx
)
demo_tab_button2 = gr.Button(
"2: Any # of Images → Short Video",
size="md", elem_classes=["demo-button"], **{"elem_id": "selected-demo-button"} if idx == 2 else {}
).click(
fn=lambda: 2,
outputs=demo_idx
)
demo_tab_button3 = gr.Button(
"3: Image → Extremely Long Video",
size="md", elem_classes=["demo-button"], **{"elem_id": "selected-demo-button"} if idx == 3 else {}
).click(
fn=lambda: 3,
outputs=demo_idx
)
gr.Markdown("---")
gr.Markdown("#### Troubleshooting ↓")
with gr.Group():
with gr.Accordion("Error or Unexpected Results?", open=False):
gr.Markdown("Please try again after refreshing the page and ensure you do not click the same button multiple times.")
with gr.Accordion("Too Slow or No GPU Allocation?", open=False):
gr.Markdown(
"Consider running the demo locally (click the dots in the top-right corner). Alternatively, you can subscribe to Hugging Face Pro for an increased GPU quota."
)
demo1_stage = gr.State(value="Selection")
demo1_selected_index = gr.State(value=None)
demo2_stage = gr.State(value="Scene")
demo2_selected_scene_index = gr.State(value=None)
demo2_selected_image_indices = gr.State(value=[])
demo3_stage = gr.State(value="Selection")
demo3_selected_index = gr.State(value=None)
demo3_current_video = gr.State(value=None)
demo3_current_poses = gr.State(value=None)
@gr.render(inputs=[demo_idx, demo1_stage, demo1_selected_index, demo2_stage, demo2_selected_scene_index, demo2_selected_image_indices, demo3_stage, demo3_selected_index])
def render_demo(
_demo_idx, _demo1_stage, _demo1_selected_index, _demo2_stage, _demo2_selected_scene_index, _demo2_selected_image_indices, _demo3_stage, _demo3_selected_index
):
match _demo_idx:
case 1:
render_demo1(_demo1_stage, _demo1_selected_index, demo1_stage, demo1_selected_index)
case 2:
render_demo2(_demo2_stage, _demo2_selected_scene_index, _demo2_selected_image_indices,
demo2_stage, demo2_selected_scene_index, demo2_selected_image_indices)
case 3:
render_demo3(_demo3_stage, _demo3_selected_index, demo3_stage, demo3_selected_index, demo3_current_video, demo3_current_poses)
if __name__ == "__main__":
demo.launch()