Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import random | |
from PIL import Image | |
#from kontext_pipeline import FluxKontextPipeline | |
from diffusers import FluxKontextPipeline | |
from diffusers.utils import load_image | |
# Load Kontext model | |
MAX_SEED = np.iinfo(np.int32).max | |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") | |
def concatenate_images(images, direction="horizontal"): | |
""" | |
Concatenate multiple PIL images either horizontally or vertically. | |
Args: | |
images: List of PIL Images | |
direction: "horizontal" or "vertical" | |
Returns: | |
PIL Image: Concatenated image | |
""" | |
if not images: | |
return None | |
# Filter out None images | |
valid_images = [img for img in images if img is not None] | |
if not valid_images: | |
return None | |
if len(valid_images) == 1: | |
return valid_images[0].convert("RGB") | |
# Convert all images to RGB | |
valid_images = [img.convert("RGB") for img in valid_images] | |
if direction == "horizontal": | |
# Calculate total width and max height | |
total_width = sum(img.width for img in valid_images) | |
max_height = max(img.height for img in valid_images) | |
# Create new image | |
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255)) | |
# Paste images | |
x_offset = 0 | |
for img in valid_images: | |
# Center image vertically if heights differ | |
y_offset = (max_height - img.height) // 2 | |
concatenated.paste(img, (x_offset, y_offset)) | |
x_offset += img.width | |
else: # vertical | |
# Calculate max width and total height | |
max_width = max(img.width for img in valid_images) | |
total_height = sum(img.height for img in valid_images) | |
# Create new image | |
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255)) | |
# Paste images | |
y_offset = 0 | |
for img in valid_images: | |
# Center image horizontally if widths differ | |
x_offset = (max_width - img.width) // 2 | |
concatenated.paste(img, (x_offset, y_offset)) | |
y_offset += img.height | |
return concatenated | |
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Handle input_images - it could be a single image or a list of images | |
if input_images is None: | |
raise gr.Error("Please upload at least one image.") | |
# If it's a single image (not a list), convert to list | |
if not isinstance(input_images, list): | |
input_images = [input_images] | |
# Filter out None images | |
valid_images = [img[0] for img in input_images if img is not None] | |
if not valid_images: | |
raise gr.Error("Please upload at least one valid image.") | |
# Concatenate images horizontally | |
concatenated_image = concatenate_images(valid_images, "horizontal") | |
if concatenated_image is None: | |
raise gr.Error("Failed to process the input images.") | |
# original_width, original_height = concatenated_image.size | |
# if original_width >= original_height: | |
# new_width = 1024 | |
# new_height = int(original_height * (new_width / original_width)) | |
# new_height = round(new_height / 64) * 64 | |
# else: | |
# new_height = 1024 | |
# new_width = int(original_width * (new_height / original_height)) | |
# new_width = round(new_width / 64) * 64 | |
#concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS) | |
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources." | |
image = pipe( | |
image=concatenated_image, | |
prompt=final_prompt, | |
guidance_scale=guidance_scale, | |
# width=new_width, | |
# height=new_height, | |
generator=torch.Generator().manual_seed(seed), | |
).images[0] | |
return image, seed, gr.update(visible=True) | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 Kontext [dev] - Multi-Image | |
Flux Kontext with multiple image input support - compose a new image with elements from multiple images using Kontext [dev] | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_images = gr.Gallery( | |
label="Upload image(s) for editing", | |
show_label=True, | |
elem_id="gallery_input", | |
columns=3, | |
rows=2, | |
object_fit="contain", | |
height="auto", | |
file_types=['image'], | |
type='pil' | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=10, | |
step=0.1, | |
value=2.5, | |
) | |
with gr.Column(): | |
result = gr.Image(label="Result", show_label=False, interactive=False) | |
reuse_button = gr.Button("Reuse this image", visible=False) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale], | |
outputs = [result, seed, reuse_button] | |
) | |
reuse_button.click( | |
fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery | |
inputs = [result], | |
outputs = [input_images] | |
) | |
demo.launch() |