Spaces:
Running
Running
File size: 11,338 Bytes
9dde820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import spaces
from pydub import AudioSegment
import os
import torchaudio
import torch
import re
from transformers import pipeline, WhisperForConditionalGeneration, WhisperProcessor, GenerationConfig
from pyannote.audio import Pipeline as DiarizationPipeline
import whisperx
import whisper_timestamped as whisper_ts
from typing import Dict
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float32
MODEL_PATH_1 = "projecte-aina/whisper-large-v3-tiny-caesar"
MODEL_PATH_2 = "langtech-veu/whisper-timestamped-cs"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def clean_text(input_text):
remove_chars = ['.', ',', ';', ':', '¿', '?', '«', '»', '-', '¡', '!', '@',
'*', '{', '}', '[', ']', '=', '/', '\\', '&', '#', '…']
output_text = ''.join(char if char not in remove_chars else ' ' for char in input_text)
return ' '.join(output_text.split()).lower()
def split_stereo_channels(audio_path):
ext = os.path.splitext(audio_path)[1].lower()
if ext == ".wav":
audio = AudioSegment.from_wav(audio_path)
elif ext == ".mp3":
audio = AudioSegment.from_file(audio_path, format="mp3")
else:
raise ValueError(f"Unsupported file format: {audio_path}")
channels = audio.split_to_mono()
if len(channels) != 2:
raise ValueError(f"Audio {audio_path} does not have 2 channels.")
channels[0].export(f"temp_mono_speaker1.wav", format="wav") # Right
channels[1].export(f"temp_mono_speaker2.wav", format="wav") # Left
def convert_to_mono(input_path):
audio = AudioSegment.from_file(input_path)
base, ext = os.path.splitext(input_path)
output_path = f"{base}_merged.wav"
print('output_path',output_path)
mono = audio.set_channels(1)
mono.export(output_path, format="wav")
return output_path
def save_temp_audio(waveform, sample_rate, path):
waveform = waveform.unsqueeze(0) if waveform.dim() == 1 else waveform
torchaudio.save(path, waveform, sample_rate)
def format_audio(audio_path):
input_audio, sample_rate = torchaudio.load(audio_path)
if input_audio.shape[0] == 2:
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
input_audio = resampler(input_audio)
print('resampled')
return input_audio.squeeze(), 16000
def assign_timestamps(asr_segments, audio_path):
waveform, sr = format_audio(audio_path)
total_duration = waveform.shape[-1] / sr
total_words = sum(len(seg["text"].split()) for seg in asr_segments)
if total_words == 0:
raise ValueError("Total number of words in ASR segments is zero. Cannot assign timestamps.")
avg_word_duration = total_duration / total_words
current_time = 0.0
for segment in asr_segments:
word_count = len(segment["text"].split())
segment_duration = word_count * avg_word_duration
segment["start"] = round(current_time, 3)
segment["end"] = round(current_time + segment_duration, 3)
current_time += segment_duration
return asr_segments
def hf_chunks_to_whisperx_segments(chunks):
return [
{
"text": chunk["text"],
"start": chunk["timestamp"][0],
"end": chunk["timestamp"][1],
}
for chunk in chunks
if chunk["timestamp"] and isinstance(chunk["timestamp"], (list, tuple))
]
def align_words_to_segments(words, segments, window=5.0):
aligned = []
seg_idx = 0
for word in words:
while seg_idx < len(segments) and segments[seg_idx]["end"] < word["start"] - window:
seg_idx += 1
for j in range(seg_idx, len(segments)):
seg = segments[j]
if seg["start"] > word["end"] + window:
break
if seg["start"] <= word["start"] < seg["end"]:
aligned.append((word, seg))
break
return aligned
def post_process_transcription(transcription, max_repeats=2):
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
cleaned_tokens = []
repetition_count = 0
previous_token = None
for token in tokens:
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
if reduced_token == previous_token:
repetition_count += 1
if repetition_count <= max_repeats:
cleaned_tokens.append(reduced_token)
else:
repetition_count = 1
cleaned_tokens.append(reduced_token)
previous_token = reduced_token
cleaned_transcription = " ".join(cleaned_tokens)
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
return cleaned_transcription
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
merged_transcription = ''
current_speaker = None
current_segment = []
for i in range(1, len(segments) - 1, 2):
speaker_tag = segments[i]
text = segments[i + 1].strip()
speaker = re.search(r'\d{2}', speaker_tag).group()
if speaker == current_speaker:
current_segment.append(text)
else:
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
current_speaker = speaker
current_segment = [text]
if current_speaker is not None:
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
return merged_transcription.strip()
def cleanup_temp_files(*file_paths):
for path in file_paths:
if path and os.path.exists(path):
os.remove(path)
def load_whisper_model(model_path: str):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = whisper_ts.load_model(model_path, device=device)
return model
def transcribe_audio(model, audio_path: str) -> Dict:
try:
result = whisper_ts.transcribe(
model,
audio_path,
beam_size=5,
best_of=5,
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
vad=False,
detect_disfluencies=True,
)
words = []
for segment in result.get('segments', []):
for word in segment.get('words', []):
word_text = word.get('word', '').strip()
if word_text.startswith(' '):
word_text = word_text[1:]
words.append({
'word': word_text,
'start': word.get('start', 0),
'end': word.get('end', 0),
'confidence': word.get('confidence', 0)
})
return {
'audio_path': audio_path,
'text': result['text'].strip(),
'segments': result.get('segments', []),
'words': words,
'duration': result.get('duration', 0),
'success': True
}
except Exception as e:
return {
'audio_path': audio_path,
'error': str(e),
'success': False
}
diarization_pipeline = DiarizationPipeline.from_pretrained("./pyannote/config.yaml")
align_model, metadata = whisperx.load_align_model(language_code="en", device=DEVICE)
asr_pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_PATH_1,
chunk_length_s=30,
device=DEVICE,
return_timestamps=True)
def diarization(audio_path):
diarization_result = diarization_pipeline(audio_path)
diarized_segments = list(diarization_result.itertracks(yield_label=True))
print('diarized_segments',diarized_segments)
return diarized_segments
def asr(audio_path):
print(f"[DEBUG] Starting ASR on audio: {audio_path}")
asr_result = asr_pipe(audio_path, return_timestamps=True)
print(f"[DEBUG] Raw ASR result: {asr_result}")
asr_segments = hf_chunks_to_whisperx_segments(asr_result['chunks'])
asr_segments = assign_timestamps(asr_segments, audio_path)
return asr_segments
def align_asr_to_diarization(asr_segments, diarized_segments, audio_path):
waveform, sample_rate = format_audio(audio_path)
word_segments = whisperx.align(asr_segments, align_model, metadata, waveform, DEVICE)
words = word_segments['word_segments']
diarized = [{"start": segment.start,"end": segment.end,"speaker": speaker} for segment, _, speaker in diarized_segments]
aligned_pairs = align_words_to_segments(words, diarized)
output = []
segment_map = {}
for word, segment in aligned_pairs:
key = (segment["start"], segment["end"], segment["speaker"])
if key not in segment_map:
segment_map[key] = []
segment_map[key].append(word["word"])
for (start, end, speaker), words in sorted(segment_map.items()):
output.append(f"[{speaker}] {' '.join(words)}")
return output
def generate(audio_path, use_v2):
if use_v2:
model = load_whisper_model(MODEL_PATH_2)
split_stereo_channels(audio_path)
left_channel_path = "temp_mono_speaker2.wav"
right_channel_path = "temp_mono_speaker1.wav"
left_waveform, left_sr = format_audio(left_channel_path)
right_waveform, right_sr = format_audio(right_channel_path)
left_result = transcribe_audio(model, left_waveform)
right_result = transcribe_audio(model, right_waveform)
def get_segments(result, speaker_label):
segments = result.get("segments", [])
if not segments:
return []
return [
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label, post_process_transcription(seg.get("text", "").strip()))
for seg in segments if seg.get("text")
]
left_segs = get_segments(left_result, "Speaker 1")
right_segs = get_segments(right_result, "Speaker 2")
merged_transcript = sorted(
left_segs + right_segs,
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
)
output = ""
for start, end, speaker, text in merged_transcript:
output += f"[{speaker}]: {text}\n"
clean_output = output.strip()
else:
mono_audio_path = convert_to_mono(audio_path)
waveform, sr = format_audio(mono_audio_path)
tmp_full_path = "tmp_full.wav"
save_temp_audio(waveform, sr, tmp_full_path)
diarized_segments = diarization(tmp_full_path)
asr_segments = asr(tmp_full_path)
for segment in asr_segments:
segment["text"] = post_process_transcription(segment["text"])
aligned_text = align_asr_to_diarization(asr_segments, diarized_segments, tmp_full_path)
clean_output = ""
for line in aligned_text:
clean_output += f"{line}\n"
clean_output = post_merge_consecutive_segments_from_text(clean_output)
cleanup_temp_files(mono_audio_path,tmp_full_path)
cleanup_temp_files(
"temp_mono_speaker1.wav",
"temp_mono_speaker2.wav"
)
return clean_output |