Spaces:
Runtime error
Runtime error
Commit
·
5cc903d
1
Parent(s):
37cc5fa
async version
Browse files- app.py +120 -123
- requirements.txt +167 -23
app.py
CHANGED
@@ -1,98 +1,73 @@
|
|
|
|
1 |
import copy
|
2 |
import os
|
3 |
from dataclasses import asdict, dataclass
|
4 |
from datetime import datetime, timedelta
|
5 |
-
from functools import lru_cache
|
6 |
from json import JSONDecodeError
|
7 |
from typing import Any, Dict, List, Optional, Union
|
8 |
-
|
9 |
-
import backoff
|
10 |
import gradio as gr
|
11 |
import httpx
|
12 |
import orjson
|
13 |
-
import
|
14 |
-
from
|
15 |
-
from
|
16 |
-
from
|
17 |
-
|
18 |
-
from huggingface_hub import (HfApi, hf_hub_url, list_repo_commits, logging,
|
19 |
-
model_info)
|
20 |
-
from huggingface_hub.utils import (EntryNotFoundError, GatedRepoError,
|
21 |
-
disable_progress_bars)
|
22 |
-
from requests.exceptions import HTTPError
|
23 |
from tqdm.auto import tqdm
|
24 |
-
from
|
25 |
-
|
26 |
-
cache = TTLCache(maxsize=500_000, ttl=timedelta(hours=24), timer=datetime.now)
|
27 |
-
|
28 |
-
client = Client()
|
29 |
-
|
30 |
-
|
31 |
-
client = CachingClient(client, heuristic=OneDayCacheHeuristic())
|
32 |
|
|
|
|
|
|
|
33 |
|
34 |
-
# CACHE_DIR = "./cache" if platform == "darwin" else "/data/"
|
35 |
|
36 |
disable_progress_bars()
|
37 |
|
38 |
logging.set_verbosity_error()
|
39 |
|
40 |
token = os.getenv("HF_TOKEN")
|
41 |
-
|
42 |
-
# cache = Cache(CACHE_DIR)
|
43 |
|
44 |
|
45 |
-
def get_model_labels(model):
|
46 |
try:
|
47 |
url = hf_hub_url(repo_id=model, filename="config.json")
|
48 |
-
|
|
|
49 |
except (KeyError, JSONDecodeError, AttributeError):
|
50 |
return None
|
51 |
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
downloads: int
|
57 |
-
created_at: datetime
|
58 |
-
|
59 |
-
|
60 |
-
def _get_engagement_stats(hub_id):
|
61 |
-
api = HfApi(token=token)
|
62 |
-
repo = api.repo_info(hub_id)
|
63 |
-
return EngagementStats(
|
64 |
-
likes=repo.likes,
|
65 |
-
downloads=repo.downloads,
|
66 |
-
created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at,
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
def _try_load_model_card(hub_id):
|
71 |
try:
|
72 |
url = hf_hub_url(
|
73 |
repo_id=hub_id, filename="README.md"
|
74 |
) # We grab card this way rather than via client library to improve performance
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
card_text = None
|
84 |
length = None
|
85 |
return card_text, length
|
86 |
|
87 |
-
|
88 |
-
def _try_parse_card_data(hub_id):
|
89 |
data = {}
|
90 |
-
keys = ["license", "language", "datasets"
|
91 |
for key in keys:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
data[key] = None
|
97 |
return data
|
98 |
|
@@ -107,39 +82,46 @@ class ModelMetadata:
|
|
107 |
pipeline_tag: Optional[str]
|
108 |
labels: Optional[List[str]]
|
109 |
languages: Optional[Union[str, List[str]]]
|
110 |
-
engagement_stats: Optional[EngagementStats] = None
|
111 |
model_card_text: Optional[str] = None
|
112 |
model_card_length: Optional[int] = None
|
|
|
|
|
|
|
113 |
|
114 |
@classmethod
|
115 |
-
|
|
|
116 |
try:
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
|
144 |
|
145 |
COMMON_SCORES = {
|
@@ -242,7 +224,6 @@ ALL_PIPELINES = {
|
|
242 |
}
|
243 |
|
244 |
|
245 |
-
@lru_cache(maxsize=None)
|
246 |
def generate_task_scores_dict():
|
247 |
task_scores = {}
|
248 |
for task in ALL_PIPELINES:
|
@@ -281,7 +262,6 @@ def generate_task_scores_dict():
|
|
281 |
return task_scores
|
282 |
|
283 |
|
284 |
-
@lru_cache(maxsize=None)
|
285 |
def generate_common_scores():
|
286 |
GENERIC_SCORES = copy.deepcopy(COMMON_SCORES)
|
287 |
GENERIC_SCORES["_max_score"] = sum(
|
@@ -294,13 +274,11 @@ SCORES = generate_task_scores_dict()
|
|
294 |
GENERIC_SCORES = generate_common_scores()
|
295 |
|
296 |
|
297 |
-
|
298 |
-
@cached(cache)
|
299 |
-
def _basic_check(hub_id):
|
300 |
-
data = ModelMetadata.from_hub(hub_id)
|
301 |
score = 0
|
302 |
if data is None:
|
303 |
return None
|
|
|
304 |
to_fix = {}
|
305 |
if task := data.pipeline_tag:
|
306 |
task_scores = SCORES[task]
|
@@ -356,38 +334,48 @@ def create_query_url(query, skip=0):
|
|
356 |
return f"https://huggingface.co/api/search/full-text?q={query}&limit=100&skip={skip}&type=model"
|
357 |
|
358 |
|
359 |
-
|
360 |
-
|
|
|
361 |
url = create_query_url(query)
|
362 |
-
r =
|
363 |
return r.json()
|
364 |
|
365 |
|
366 |
-
@backoff.on_exception(
|
367 |
-
backoff.expo,
|
368 |
-
Exception,
|
369 |
-
max_time=2,
|
370 |
-
raise_on_giveup=False,
|
371 |
-
)
|
372 |
def parse_single_result(result):
|
373 |
name, filename = result["name"], result["fileName"]
|
374 |
search_result_file_url = hf_hub_url(name, filename)
|
375 |
repo_hub_url = f"https://huggingface.co/{name}"
|
376 |
-
score = _basic_check(name)
|
377 |
-
if score is None:
|
378 |
-
return None
|
379 |
-
score = orjson.loads(score)
|
380 |
return {
|
381 |
"name": name,
|
382 |
"search_result_file_url": search_result_file_url,
|
383 |
"repo_hub_url": repo_hub_url,
|
384 |
-
"metadata_score": score["score"],
|
385 |
-
"model_card_length": score["model_card_length"],
|
386 |
-
"is_licensed": bool(score["license"]),
|
387 |
-
# "metadata_report": score
|
388 |
}
|
389 |
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
def filter_for_license(results):
|
392 |
for result in results:
|
393 |
if result["is_licensed"]:
|
@@ -406,7 +394,7 @@ def filter_search_results(
|
|
406 |
min_model_card_length=None,
|
407 |
): # TODO make code more intuitive
|
408 |
# TODO setup filters as separate functions and chain results
|
409 |
-
results =
|
410 |
for i, parsed_result in tqdm(enumerate(results)):
|
411 |
# parsed_result = parse_single_result(result)
|
412 |
if parsed_result is None:
|
@@ -418,6 +406,7 @@ def filter_search_results(
|
|
418 |
or min_score is None
|
419 |
and min_model_card_length is None
|
420 |
):
|
|
|
421 |
yield parsed_result
|
422 |
elif min_score is not None:
|
423 |
if parsed_result["metadata_score"] <= min_score:
|
@@ -472,22 +461,36 @@ def create_markdown(results): # TODO move to separate file
|
|
472 |
rows.append(row)
|
473 |
return "\n".join(rows)
|
474 |
|
475 |
-
|
476 |
-
|
|
|
477 |
try:
|
478 |
-
|
|
|
479 |
result["text"] = find_context(result_text, query, 100)
|
480 |
except httpx.ConnectError:
|
481 |
result["text"] = "Could not load model card"
|
482 |
return result
|
483 |
|
484 |
-
@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
def _search_hub(
|
486 |
query: str,
|
487 |
min_score: Optional[int] = None,
|
488 |
min_model_card_length: Optional[int] = None,
|
489 |
):
|
490 |
-
results = get_results(query)
|
491 |
print(f"Found {len(results['hits'])} results")
|
492 |
results = results["hits"]
|
493 |
number_original_results = len(results)
|
@@ -495,12 +498,7 @@ def _search_hub(
|
|
495 |
results, min_score=min_score, min_model_card_length=min_model_card_length
|
496 |
)
|
497 |
filtered_results = sort_search_results(filtered_results)
|
498 |
-
|
499 |
-
# for result in filtered_results:
|
500 |
-
# result_text = httpx.get(result["search_result_file_url"]).text
|
501 |
-
# result["text"] = find_context(result_text, query, 100)
|
502 |
-
# final_results.append(result)
|
503 |
-
final_results = thread_map(get_result_card_snippet, filtered_results)
|
504 |
percent_of_original = round(
|
505 |
len(final_results) / number_original_results * 100, ndigits=0
|
506 |
)
|
@@ -510,7 +508,6 @@ def _search_hub(
|
|
510 |
| {number_original_results} | {len(final_results)} | {percent_of_original}% |
|
511 |
|
512 |
"""
|
513 |
-
print(final_results)
|
514 |
return filtered_vs_og, create_markdown(final_results)
|
515 |
|
516 |
|
|
|
1 |
+
import asyncio
|
2 |
import copy
|
3 |
import os
|
4 |
from dataclasses import asdict, dataclass
|
5 |
from datetime import datetime, timedelta
|
|
|
6 |
from json import JSONDecodeError
|
7 |
from typing import Any, Dict, List, Optional, Union
|
|
|
|
|
8 |
import gradio as gr
|
9 |
import httpx
|
10 |
import orjson
|
11 |
+
from cashews import NOT_NONE, cache
|
12 |
+
from httpx import AsyncClient
|
13 |
+
from huggingface_hub import hf_hub_url, logging
|
14 |
+
from huggingface_hub.utils import disable_progress_bars
|
15 |
+
from rich import print
|
|
|
|
|
|
|
|
|
|
|
16 |
from tqdm.auto import tqdm
|
17 |
+
from httpx import Client
|
18 |
+
from datetime import datetime, timedelta
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
cache.setup(
|
21 |
+
"mem://"
|
22 |
+
)
|
23 |
|
|
|
24 |
|
25 |
disable_progress_bars()
|
26 |
|
27 |
logging.set_verbosity_error()
|
28 |
|
29 |
token = os.getenv("HF_TOKEN")
|
30 |
+
headers = {"authorization": f"Bearer {token}"}
|
|
|
31 |
|
32 |
|
33 |
+
async def get_model_labels(model, client):
|
34 |
try:
|
35 |
url = hf_hub_url(repo_id=model, filename="config.json")
|
36 |
+
resp = await client.get(url, timeout=2)
|
37 |
+
return list(resp.json()["label2id"].keys())
|
38 |
except (KeyError, JSONDecodeError, AttributeError):
|
39 |
return None
|
40 |
|
41 |
|
42 |
+
async def _try_load_model_card(hub_id, client=None):
|
43 |
+
if not client:
|
44 |
+
client = AsyncClient(headers=headers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
url = hf_hub_url(
|
47 |
repo_id=hub_id, filename="README.md"
|
48 |
) # We grab card this way rather than via client library to improve performance
|
49 |
+
resp = await client.get(url)
|
50 |
+
if resp.status_code == 200:
|
51 |
+
card_text = resp.text
|
52 |
+
length = len(card_text)
|
53 |
+
elif resp.status_code == 404:
|
54 |
+
card_text = None
|
55 |
+
length = 0
|
56 |
+
except httpx.ConnectError:
|
57 |
card_text = None
|
58 |
length = None
|
59 |
return card_text, length
|
60 |
|
61 |
+
def _try_parse_card_data(hub_json_data):
|
|
|
62 |
data = {}
|
63 |
+
keys = ["license", "language", "datasets"]
|
64 |
for key in keys:
|
65 |
+
if card_data := hub_json_data.get("cardData"):
|
66 |
+
try:
|
67 |
+
data[key] = card_data.get(key)
|
68 |
+
except (KeyError, AttributeError):
|
69 |
+
data[key] = None
|
70 |
+
else:
|
71 |
data[key] = None
|
72 |
return data
|
73 |
|
|
|
82 |
pipeline_tag: Optional[str]
|
83 |
labels: Optional[List[str]]
|
84 |
languages: Optional[Union[str, List[str]]]
|
|
|
85 |
model_card_text: Optional[str] = None
|
86 |
model_card_length: Optional[int] = None
|
87 |
+
likes: Optional[int] = None
|
88 |
+
downloads: Optional[int] = None
|
89 |
+
created_at: Optional[datetime] = None
|
90 |
|
91 |
@classmethod
|
92 |
+
@cache(ttl=timedelta(hours=3), condition=NOT_NONE)
|
93 |
+
async def from_hub(cls, hub_id, client=None):
|
94 |
try:
|
95 |
+
if not client:
|
96 |
+
client = httpx.AsyncClient()
|
97 |
+
url = f"https://huggingface.co/api/models/{hub_id}"
|
98 |
+
resp = await client.get(url)
|
99 |
+
hub_json_data = resp.json()
|
100 |
+
card_text, length = await _try_load_model_card(hub_id)
|
101 |
+
data = _try_parse_card_data(hub_json_data)
|
102 |
+
library_name = hub_json_data.get("library_name")
|
103 |
+
pipeline_tag = hub_json_data.get("pipeline_tag")
|
104 |
+
downloads = hub_json_data.get("downloads")
|
105 |
+
likes = hub_json_data.get("likes")
|
106 |
+
tags = hub_json_data.get("tags")
|
107 |
+
labels = await get_model_labels(hub_id, client)
|
108 |
+
return ModelMetadata(
|
109 |
+
hub_id=hub_id,
|
110 |
+
languages=data["language"],
|
111 |
+
tags=tags,
|
112 |
+
license=data["license"],
|
113 |
+
library_name=library_name,
|
114 |
+
datasets=data["datasets"],
|
115 |
+
pipeline_tag=pipeline_tag,
|
116 |
+
labels=labels,
|
117 |
+
model_card_text=card_text,
|
118 |
+
downloads=downloads,
|
119 |
+
likes=likes,
|
120 |
+
model_card_length=length,
|
121 |
+
)
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Failed to create ModelMetadata for model {hub_id}: {str(e)}")
|
124 |
+
return None
|
125 |
|
126 |
|
127 |
COMMON_SCORES = {
|
|
|
224 |
}
|
225 |
|
226 |
|
|
|
227 |
def generate_task_scores_dict():
|
228 |
task_scores = {}
|
229 |
for task in ALL_PIPELINES:
|
|
|
262 |
return task_scores
|
263 |
|
264 |
|
|
|
265 |
def generate_common_scores():
|
266 |
GENERIC_SCORES = copy.deepcopy(COMMON_SCORES)
|
267 |
GENERIC_SCORES["_max_score"] = sum(
|
|
|
274 |
GENERIC_SCORES = generate_common_scores()
|
275 |
|
276 |
|
277 |
+
def _basic_check(data: Optional[ModelMetadata]):
|
|
|
|
|
|
|
278 |
score = 0
|
279 |
if data is None:
|
280 |
return None
|
281 |
+
hub_id = data.hub_id
|
282 |
to_fix = {}
|
283 |
if task := data.pipeline_tag:
|
284 |
task_scores = SCORES[task]
|
|
|
334 |
return f"https://huggingface.co/api/search/full-text?q={query}&limit=100&skip={skip}&type=model"
|
335 |
|
336 |
|
337 |
+
def get_results(query,sync_client=None) -> Dict[Any, Any]:
|
338 |
+
if not sync_client:
|
339 |
+
sync_client = Client(http2=True, headers=headers)
|
340 |
url = create_query_url(query)
|
341 |
+
r = sync_client.get(url)
|
342 |
return r.json()
|
343 |
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
def parse_single_result(result):
|
346 |
name, filename = result["name"], result["fileName"]
|
347 |
search_result_file_url = hf_hub_url(name, filename)
|
348 |
repo_hub_url = f"https://huggingface.co/{name}"
|
|
|
|
|
|
|
|
|
349 |
return {
|
350 |
"name": name,
|
351 |
"search_result_file_url": search_result_file_url,
|
352 |
"repo_hub_url": repo_hub_url,
|
|
|
|
|
|
|
|
|
353 |
}
|
354 |
|
355 |
|
356 |
+
@cache(ttl=timedelta(hours=3), condition=NOT_NONE)
|
357 |
+
async def get_hub_models(results, client=None):
|
358 |
+
parsed_results = [parse_single_result(result) for result in results]
|
359 |
+
if not client:
|
360 |
+
client = AsyncClient(http2=True, headers=headers)
|
361 |
+
model_ids = [result["name"] for result in parsed_results]
|
362 |
+
model_objs = [ModelMetadata.from_hub(model, client=client) for model in model_ids]
|
363 |
+
models = await asyncio.gather(*model_objs)
|
364 |
+
results = []
|
365 |
+
for result, model in zip(parsed_results, models):
|
366 |
+
score = _basic_check(model)
|
367 |
+
# print(f"score for {model} is {score}")
|
368 |
+
if score is not None:
|
369 |
+
score = orjson.loads(score)
|
370 |
+
result["metadata_score"] = score["score"]
|
371 |
+
result["model_card_length"] = score["model_card_length"]
|
372 |
+
result["is_licensed"] = (bool(score["license"]),)
|
373 |
+
results.append(result)
|
374 |
+
else:
|
375 |
+
results.append(None)
|
376 |
+
return results
|
377 |
+
|
378 |
+
|
379 |
def filter_for_license(results):
|
380 |
for result in results:
|
381 |
if result["is_licensed"]:
|
|
|
394 |
min_model_card_length=None,
|
395 |
): # TODO make code more intuitive
|
396 |
# TODO setup filters as separate functions and chain results
|
397 |
+
results = asyncio.run(get_hub_models(results))
|
398 |
for i, parsed_result in tqdm(enumerate(results)):
|
399 |
# parsed_result = parse_single_result(result)
|
400 |
if parsed_result is None:
|
|
|
406 |
or min_score is None
|
407 |
and min_model_card_length is None
|
408 |
):
|
409 |
+
parsed_result["original_position"] = i
|
410 |
yield parsed_result
|
411 |
elif min_score is not None:
|
412 |
if parsed_result["metadata_score"] <= min_score:
|
|
|
461 |
rows.append(row)
|
462 |
return "\n".join(rows)
|
463 |
|
464 |
+
async def get_result_card_snippet(result, query=None, client=None):
|
465 |
+
if not client:
|
466 |
+
client = AsyncClient(http2=True, headers=headers)
|
467 |
try:
|
468 |
+
resp = await client.get(result["search_result_file_url"])
|
469 |
+
result_text = resp.text
|
470 |
result["text"] = find_context(result_text, query, 100)
|
471 |
except httpx.ConnectError:
|
472 |
result["text"] = "Could not load model card"
|
473 |
return result
|
474 |
|
475 |
+
@cache(ttl=timedelta(hours=3), condition=NOT_NONE)
|
476 |
+
async def get_result_card_snippets(results, query=None, client=None):
|
477 |
+
if not client:
|
478 |
+
client = AsyncClient(http2=True, headers=headers)
|
479 |
+
result_snippets = [
|
480 |
+
get_result_card_snippet(result, query=query, client=client)
|
481 |
+
for result in results
|
482 |
+
]
|
483 |
+
results = await asyncio.gather(*result_snippets)
|
484 |
+
return results
|
485 |
+
|
486 |
+
sync_client = Client(http2=True, headers=headers)
|
487 |
+
|
488 |
def _search_hub(
|
489 |
query: str,
|
490 |
min_score: Optional[int] = None,
|
491 |
min_model_card_length: Optional[int] = None,
|
492 |
):
|
493 |
+
results = get_results(query, sync_client)
|
494 |
print(f"Found {len(results['hits'])} results")
|
495 |
results = results["hits"]
|
496 |
number_original_results = len(results)
|
|
|
498 |
results, min_score=min_score, min_model_card_length=min_model_card_length
|
499 |
)
|
500 |
filtered_results = sort_search_results(filtered_results)
|
501 |
+
final_results = asyncio.run(get_result_card_snippets(filtered_results, query=query))
|
|
|
|
|
|
|
|
|
|
|
502 |
percent_of_original = round(
|
503 |
len(final_results) / number_original_results * 100, ndigits=0
|
504 |
)
|
|
|
508 |
| {number_original_results} | {len(final_results)} | {percent_of_original}% |
|
509 |
|
510 |
"""
|
|
|
511 |
return filtered_vs_og, create_markdown(final_results)
|
512 |
|
513 |
|
requirements.txt
CHANGED
@@ -1,24 +1,36 @@
|
|
1 |
#
|
2 |
-
# This file is autogenerated by pip-compile with Python 3.
|
3 |
# by the following command:
|
4 |
#
|
5 |
# pip-compile --resolver=backtracking
|
6 |
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
anyio==3.7.0
|
8 |
# via
|
9 |
# httpcore
|
10 |
-
#
|
11 |
appnope==0.1.3
|
12 |
# via
|
13 |
# ipykernel
|
14 |
# ipython
|
15 |
asttokens==2.2.1
|
16 |
# via stack-data
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
backcall==0.2.0
|
18 |
# via ipython
|
19 |
-
|
20 |
-
# via -r requirements.in
|
21 |
-
cachetools==5.3.1
|
22 |
# via -r requirements.in
|
23 |
certifi==2023.5.7
|
24 |
# via
|
@@ -27,35 +39,73 @@ certifi==2023.5.7
|
|
27 |
# requests
|
28 |
charset-normalizer==3.1.0
|
29 |
# via
|
|
|
30 |
# httpx
|
31 |
# requests
|
|
|
|
|
32 |
comm==0.1.3
|
33 |
# via ipykernel
|
|
|
|
|
|
|
|
|
34 |
debugpy==1.6.7
|
35 |
# via ipykernel
|
36 |
decorator==5.1.1
|
37 |
# via ipython
|
|
|
|
|
38 |
executing==1.2.0
|
39 |
# via stack-data
|
|
|
|
|
|
|
|
|
40 |
filelock==3.12.2
|
41 |
# via huggingface-hub
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
fsspec==2023.6.0
|
43 |
-
# via
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
h11==0.12.0
|
45 |
-
# via
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
httpcore==0.14.7
|
47 |
# via httpx
|
48 |
-
httpx==0.22.0
|
49 |
-
# via
|
50 |
-
|
51 |
-
#
|
|
|
52 |
huggingface-hub==0.15.1
|
53 |
-
# via
|
|
|
|
|
|
|
|
|
|
|
54 |
idna==3.4
|
55 |
# via
|
56 |
# anyio
|
57 |
# requests
|
58 |
# rfc3986
|
|
|
59 |
ipykernel==6.23.3
|
60 |
# via ipywidgets
|
61 |
ipython==8.14.0
|
@@ -66,6 +116,12 @@ ipywidgets==8.0.6
|
|
66 |
# via -r requirements.in
|
67 |
jedi==0.18.2
|
68 |
# via ipython
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
jupyter-client==8.3.0
|
70 |
# via ipykernel
|
71 |
jupyter-core==5.3.1
|
@@ -74,28 +130,66 @@ jupyter-core==5.3.1
|
|
74 |
# jupyter-client
|
75 |
jupyterlab-widgets==3.0.7
|
76 |
# via ipywidgets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
matplotlib-inline==0.1.6
|
78 |
# via
|
79 |
# ipykernel
|
80 |
# ipython
|
81 |
-
|
82 |
-
# via
|
83 |
-
|
84 |
-
# via
|
|
|
|
|
|
|
|
|
85 |
nest-asyncio==1.5.6
|
86 |
# via ipykernel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
orjson==3.9.1
|
88 |
-
# via
|
|
|
|
|
89 |
packaging==23.1
|
90 |
# via
|
|
|
91 |
# huggingface-hub
|
92 |
# ipykernel
|
|
|
|
|
|
|
|
|
|
|
93 |
parso==0.8.3
|
94 |
# via jedi
|
95 |
pexpect==4.8.0
|
96 |
# via ipython
|
97 |
pickleshare==0.7.5
|
98 |
# via ipython
|
|
|
|
|
|
|
|
|
99 |
platformdirs==3.8.0
|
100 |
# via jupyter-core
|
101 |
prompt-toolkit==3.0.38
|
@@ -106,20 +200,49 @@ ptyprocess==0.7.0
|
|
106 |
# via pexpect
|
107 |
pure-eval==0.2.2
|
108 |
# via stack-data
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
pygments==2.15.1
|
110 |
-
# via
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
python-dateutil==2.8.2
|
112 |
-
# via
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
pyyaml==6.0
|
114 |
-
# via
|
|
|
|
|
115 |
pyzmq==25.1.0
|
116 |
# via
|
117 |
# ipykernel
|
118 |
# jupyter-client
|
119 |
requests==2.31.0
|
120 |
-
# via
|
|
|
|
|
|
|
121 |
rfc3986[idna2008]==1.5.0
|
122 |
# via httpx
|
|
|
|
|
|
|
|
|
123 |
six==1.16.0
|
124 |
# via
|
125 |
# asttokens
|
@@ -131,8 +254,12 @@ sniffio==1.3.0
|
|
131 |
# httpx
|
132 |
stack-data==0.6.2
|
133 |
# via ipython
|
|
|
|
|
134 |
toolz==0.12.0
|
135 |
-
# via
|
|
|
|
|
136 |
tornado==6.3.2
|
137 |
# via
|
138 |
# ipykernel
|
@@ -151,10 +278,27 @@ traitlets==5.9.0
|
|
151 |
# jupyter-core
|
152 |
# matplotlib-inline
|
153 |
typing-extensions==4.7.0
|
154 |
-
# via
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
urllib3==2.0.3
|
156 |
# via requests
|
|
|
|
|
157 |
wcwidth==0.2.6
|
158 |
# via prompt-toolkit
|
|
|
|
|
|
|
|
|
159 |
widgetsnbextension==4.0.7
|
160 |
# via ipywidgets
|
|
|
|
|
|
1 |
#
|
2 |
+
# This file is autogenerated by pip-compile with Python 3.10
|
3 |
# by the following command:
|
4 |
#
|
5 |
# pip-compile --resolver=backtracking
|
6 |
#
|
7 |
+
aiofiles==23.1.0
|
8 |
+
# via gradio
|
9 |
+
aiohttp==3.8.4
|
10 |
+
# via gradio
|
11 |
+
aiosignal==1.3.1
|
12 |
+
# via aiohttp
|
13 |
+
altair==5.0.1
|
14 |
+
# via gradio
|
15 |
anyio==3.7.0
|
16 |
# via
|
17 |
# httpcore
|
18 |
+
# starlette
|
19 |
appnope==0.1.3
|
20 |
# via
|
21 |
# ipykernel
|
22 |
# ipython
|
23 |
asttokens==2.2.1
|
24 |
# via stack-data
|
25 |
+
async-timeout==4.0.2
|
26 |
+
# via aiohttp
|
27 |
+
attrs==23.1.0
|
28 |
+
# via
|
29 |
+
# aiohttp
|
30 |
+
# jsonschema
|
31 |
backcall==0.2.0
|
32 |
# via ipython
|
33 |
+
cashews==6.2.0
|
|
|
|
|
34 |
# via -r requirements.in
|
35 |
certifi==2023.5.7
|
36 |
# via
|
|
|
39 |
# requests
|
40 |
charset-normalizer==3.1.0
|
41 |
# via
|
42 |
+
# aiohttp
|
43 |
# httpx
|
44 |
# requests
|
45 |
+
click==8.1.3
|
46 |
+
# via uvicorn
|
47 |
comm==0.1.3
|
48 |
# via ipykernel
|
49 |
+
contourpy==1.1.0
|
50 |
+
# via matplotlib
|
51 |
+
cycler==0.11.0
|
52 |
+
# via matplotlib
|
53 |
debugpy==1.6.7
|
54 |
# via ipykernel
|
55 |
decorator==5.1.1
|
56 |
# via ipython
|
57 |
+
exceptiongroup==1.1.1
|
58 |
+
# via anyio
|
59 |
executing==1.2.0
|
60 |
# via stack-data
|
61 |
+
fastapi==0.99.1
|
62 |
+
# via gradio
|
63 |
+
ffmpy==0.3.0
|
64 |
+
# via gradio
|
65 |
filelock==3.12.2
|
66 |
# via huggingface-hub
|
67 |
+
fonttools==4.40.0
|
68 |
+
# via matplotlib
|
69 |
+
frozenlist==1.3.3
|
70 |
+
# via
|
71 |
+
# aiohttp
|
72 |
+
# aiosignal
|
73 |
fsspec==2023.6.0
|
74 |
+
# via
|
75 |
+
# gradio-client
|
76 |
+
# huggingface-hub
|
77 |
+
gradio==3.35.2
|
78 |
+
# via -r requirements.in
|
79 |
+
gradio-client==0.2.7
|
80 |
+
# via gradio
|
81 |
h11==0.12.0
|
82 |
+
# via
|
83 |
+
# httpcore
|
84 |
+
# uvicorn
|
85 |
+
h2==4.1.0
|
86 |
+
# via httpx
|
87 |
+
hpack==4.0.0
|
88 |
+
# via h2
|
89 |
httpcore==0.14.7
|
90 |
# via httpx
|
91 |
+
httpx[http2]==0.22.0
|
92 |
+
# via
|
93 |
+
# -r requirements.in
|
94 |
+
# gradio
|
95 |
+
# gradio-client
|
96 |
huggingface-hub==0.15.1
|
97 |
+
# via
|
98 |
+
# -r requirements.in
|
99 |
+
# gradio
|
100 |
+
# gradio-client
|
101 |
+
hyperframe==6.0.1
|
102 |
+
# via h2
|
103 |
idna==3.4
|
104 |
# via
|
105 |
# anyio
|
106 |
# requests
|
107 |
# rfc3986
|
108 |
+
# yarl
|
109 |
ipykernel==6.23.3
|
110 |
# via ipywidgets
|
111 |
ipython==8.14.0
|
|
|
116 |
# via -r requirements.in
|
117 |
jedi==0.18.2
|
118 |
# via ipython
|
119 |
+
jinja2==3.1.2
|
120 |
+
# via
|
121 |
+
# altair
|
122 |
+
# gradio
|
123 |
+
jsonschema==4.17.3
|
124 |
+
# via altair
|
125 |
jupyter-client==8.3.0
|
126 |
# via ipykernel
|
127 |
jupyter-core==5.3.1
|
|
|
130 |
# jupyter-client
|
131 |
jupyterlab-widgets==3.0.7
|
132 |
# via ipywidgets
|
133 |
+
kiwisolver==1.4.4
|
134 |
+
# via matplotlib
|
135 |
+
linkify-it-py==2.0.2
|
136 |
+
# via markdown-it-py
|
137 |
+
markdown-it-py[linkify]==2.2.0
|
138 |
+
# via
|
139 |
+
# gradio
|
140 |
+
# mdit-py-plugins
|
141 |
+
# rich
|
142 |
+
markupsafe==2.1.3
|
143 |
+
# via
|
144 |
+
# gradio
|
145 |
+
# jinja2
|
146 |
+
matplotlib==3.7.1
|
147 |
+
# via gradio
|
148 |
matplotlib-inline==0.1.6
|
149 |
# via
|
150 |
# ipykernel
|
151 |
# ipython
|
152 |
+
mdit-py-plugins==0.3.3
|
153 |
+
# via gradio
|
154 |
+
mdurl==0.1.2
|
155 |
+
# via markdown-it-py
|
156 |
+
multidict==6.0.4
|
157 |
+
# via
|
158 |
+
# aiohttp
|
159 |
+
# yarl
|
160 |
nest-asyncio==1.5.6
|
161 |
# via ipykernel
|
162 |
+
numpy==1.25.0
|
163 |
+
# via
|
164 |
+
# altair
|
165 |
+
# contourpy
|
166 |
+
# gradio
|
167 |
+
# matplotlib
|
168 |
+
# pandas
|
169 |
orjson==3.9.1
|
170 |
+
# via
|
171 |
+
# -r requirements.in
|
172 |
+
# gradio
|
173 |
packaging==23.1
|
174 |
# via
|
175 |
+
# gradio-client
|
176 |
# huggingface-hub
|
177 |
# ipykernel
|
178 |
+
# matplotlib
|
179 |
+
pandas==2.0.3
|
180 |
+
# via
|
181 |
+
# altair
|
182 |
+
# gradio
|
183 |
parso==0.8.3
|
184 |
# via jedi
|
185 |
pexpect==4.8.0
|
186 |
# via ipython
|
187 |
pickleshare==0.7.5
|
188 |
# via ipython
|
189 |
+
pillow==10.0.0
|
190 |
+
# via
|
191 |
+
# gradio
|
192 |
+
# matplotlib
|
193 |
platformdirs==3.8.0
|
194 |
# via jupyter-core
|
195 |
prompt-toolkit==3.0.38
|
|
|
200 |
# via pexpect
|
201 |
pure-eval==0.2.2
|
202 |
# via stack-data
|
203 |
+
pydantic==1.10.10
|
204 |
+
# via
|
205 |
+
# fastapi
|
206 |
+
# gradio
|
207 |
+
pydub==0.25.1
|
208 |
+
# via gradio
|
209 |
pygments==2.15.1
|
210 |
+
# via
|
211 |
+
# gradio
|
212 |
+
# ipython
|
213 |
+
# rich
|
214 |
+
pyparsing==3.1.0
|
215 |
+
# via matplotlib
|
216 |
+
pyrsistent==0.19.3
|
217 |
+
# via jsonschema
|
218 |
python-dateutil==2.8.2
|
219 |
+
# via
|
220 |
+
# jupyter-client
|
221 |
+
# matplotlib
|
222 |
+
# pandas
|
223 |
+
python-multipart==0.0.6
|
224 |
+
# via gradio
|
225 |
+
pytz==2023.3
|
226 |
+
# via pandas
|
227 |
pyyaml==6.0
|
228 |
+
# via
|
229 |
+
# gradio
|
230 |
+
# huggingface-hub
|
231 |
pyzmq==25.1.0
|
232 |
# via
|
233 |
# ipykernel
|
234 |
# jupyter-client
|
235 |
requests==2.31.0
|
236 |
+
# via
|
237 |
+
# gradio
|
238 |
+
# gradio-client
|
239 |
+
# huggingface-hub
|
240 |
rfc3986[idna2008]==1.5.0
|
241 |
# via httpx
|
242 |
+
rich==13.4.2
|
243 |
+
# via -r requirements.in
|
244 |
+
semantic-version==2.10.0
|
245 |
+
# via gradio
|
246 |
six==1.16.0
|
247 |
# via
|
248 |
# asttokens
|
|
|
254 |
# httpx
|
255 |
stack-data==0.6.2
|
256 |
# via ipython
|
257 |
+
starlette==0.27.0
|
258 |
+
# via fastapi
|
259 |
toolz==0.12.0
|
260 |
+
# via
|
261 |
+
# -r requirements.in
|
262 |
+
# altair
|
263 |
tornado==6.3.2
|
264 |
# via
|
265 |
# ipykernel
|
|
|
278 |
# jupyter-core
|
279 |
# matplotlib-inline
|
280 |
typing-extensions==4.7.0
|
281 |
+
# via
|
282 |
+
# altair
|
283 |
+
# fastapi
|
284 |
+
# gradio-client
|
285 |
+
# huggingface-hub
|
286 |
+
# pydantic
|
287 |
+
tzdata==2023.3
|
288 |
+
# via pandas
|
289 |
+
uc-micro-py==1.0.2
|
290 |
+
# via linkify-it-py
|
291 |
urllib3==2.0.3
|
292 |
# via requests
|
293 |
+
uvicorn==0.22.0
|
294 |
+
# via gradio
|
295 |
wcwidth==0.2.6
|
296 |
# via prompt-toolkit
|
297 |
+
websockets==11.0.3
|
298 |
+
# via
|
299 |
+
# gradio
|
300 |
+
# gradio-client
|
301 |
widgetsnbextension==4.0.7
|
302 |
# via ipywidgets
|
303 |
+
yarl==1.9.2
|
304 |
+
# via aiohttp
|