|
import streamlit as st |
|
from components.visualizations import plot_emotion_distribution |
|
from utils import model_inference |
|
from components.audio_player import play_audio |
|
from components.debug_tools import DebugTools |
|
import json |
|
import os |
|
import time |
|
|
|
|
|
if "emotion_result" not in st.session_state: |
|
st.session_state.emotion_result = None |
|
if "feedback_submitted" not in st.session_state: |
|
st.session_state.feedback_submitted = False |
|
if "user_feedback" not in st.session_state: |
|
st.session_state.user_feedback = "" |
|
|
|
def show_history(): |
|
"""📜 显示历史记录(最近 5 条)""" |
|
history_file = "history/history.json" |
|
|
|
if os.path.exists(history_file): |
|
with open(history_file, 'r') as f: |
|
history = json.load(f) |
|
|
|
if history: |
|
st.subheader("📜 History") |
|
with st.expander("Click to view past records", expanded=False): |
|
for record in history[-5:]: |
|
st.write(f"🎧 **Audio File**: {record['audio_file']}") |
|
st.write(f"📝 **Transcript**: {record['transcript']}") |
|
st.write(f"🎭 **Emotions**: {record['emotions']}") |
|
st.write("---") |
|
else: |
|
st.write("🚫 No history records found.") |
|
else: |
|
st.write("🚫 No history file.") |
|
|
|
def show(): |
|
|
|
if "emotion_result" not in st.session_state: |
|
st.session_state.emotion_result = None |
|
if "feedback_submitted" not in st.session_state: |
|
st.session_state.feedback_submitted = False |
|
if "user_feedback" not in st.session_state: |
|
st.session_state.user_feedback = "" |
|
st.markdown( |
|
"<h1 style='text-align: center; color: #FF5733;'>😉 Emotion Analyzer 🎭</h1>", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
show_history() |
|
|
|
|
|
debug = DebugTools() |
|
debug.show_debug_info() |
|
|
|
|
|
st.markdown("---") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
audio_file = st.file_uploader("Upload your audio file", type=['wav', 'mp3']) |
|
|
|
if audio_file is not None: |
|
debug.show_audio_info(audio_file) |
|
st.audio(audio_file, format="audio/mp3") |
|
with col2: |
|
text_input = st.text_input("Enter your text input") |
|
transcript = text_input |
|
st.write("📄 **Audio transcript:**", transcript) |
|
|
|
|
|
if audio_file is None and "emotion_result" in st.session_state and st.session_state.emotion_result is not None: |
|
st.warning("🚫 Audio file removed. Resetting analysis results.") |
|
st.session_state.emotion_result = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
if audio_file is not None and text_input: |
|
if st.button("Analyse Your Emotion! 😊"): |
|
st.session_state.feedback_submitted = False |
|
|
|
|
|
progress_bar = st.progress(0) |
|
for percent in range(0, 101, 20): |
|
progress_bar.progress(percent) |
|
time.sleep(0.2) |
|
|
|
try: |
|
transcript = text_input |
|
|
|
|
|
with st.spinner("Analysing emotion..."): |
|
for percent in range(30, 101, 20): |
|
progress_bar.progress(percent) |
|
time.sleep(0.2) |
|
emotions = model_inference.predict_emotion(text_input, audio_file) |
|
|
|
if emotions: |
|
best_emotion = max(emotions, key=lambda x: float(emotions[x].strip('%'))) |
|
|
|
st.markdown("---") |
|
st.markdown("### 🎭 Emotion Analysis Results") |
|
st.success(f"🎭 **Predicted Emotion:** {best_emotion}") |
|
st.success(f"📊 **Emotion Probabilities:** {emotions}") |
|
|
|
|
|
st.session_state.emotion_result = { |
|
"best_emotion": best_emotion, |
|
"emotions": emotions, |
|
"transcript": transcript |
|
} |
|
|
|
except Exception as e: |
|
debug.log_error(e, context=f"Processing file: {audio_file.name}") |
|
|
|
|
|
if st.session_state.emotion_result: |
|
best_emotion = st.session_state.emotion_result["best_emotion"] |
|
emotions = st.session_state.emotion_result["emotions"] |
|
|
|
|
|
if best_emotion == "Joy": |
|
st.balloons() |
|
st.markdown("**Yay! You seem so happy! 🎉😊**") |
|
st.write("Keep smiling, it's contagious! 🌟") |
|
elif best_emotion == "Sad": |
|
st.snow() |
|
st.markdown("**Oh no, you seem a bit down... 😔💭**") |
|
st.write("I'm here if you need to talk or cheer up! 💬💖") |
|
else: |
|
emotion_messages = { |
|
"Angry": ["😡 **Whoa! Looks like you're really angry...**", "Take a deep breath, let's cool off together! 🧘♂️"], |
|
"Surprised": ["🤯 **Wow, you're really surprised!**", "That's a big reaction! Hope it's a good surprise! 🎉"], |
|
"Fearful": ["😨 **Looks like you're feeling scared...**", "It's okay to be scared. I'm here to help! 💪"], |
|
"Disgusted": ["🤢 **Yikes, you're feeling disgusted...**", "That doesn't sound pleasant. Let's turn it around! 🌈"], |
|
"Neutral": ["🤔 **Hmm, your emotions seem mixed...**", "Can you tell me more? Let's figure this out together! 💬"] |
|
} |
|
if best_emotion in emotion_messages: |
|
st.markdown(emotion_messages[best_emotion][0]) |
|
st.write(emotion_messages[best_emotion][1]) |
|
|
|
|
|
plot_emotion_distribution(emotions) |
|
|
|
|
|
if audio_file is not None: |
|
model_inference.save_history(audio_file, transcript, emotions) |
|
else: |
|
st.warning("⚠️ No audio file uploaded. History not saved.") |
|
|
|
|
|
if st.session_state.emotion_result: |
|
st.subheader("📣 Give us your feedback!") |
|
feedback = st.radio("Do you agree with the prediction?", ["😀 Great!", "😐 Okay", "😡 Wrong"], index=1) |
|
user_feedback = st.text_area("Tell us more (optional):", st.session_state.user_feedback) |
|
|
|
if st.button("Submit Feedback"): |
|
st.session_state.user_feedback = user_feedback |
|
st.session_state.feedback_submitted = True |
|
|
|
if st.session_state.feedback_submitted: |
|
st.success("✅ Thank you for your feedback! It has been recorded.") |
|
|
|
|
|
|