Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#6
by
linoyts
HF Staff
- opened
app.py
CHANGED
|
@@ -22,6 +22,36 @@ from io import BytesIO
|
|
| 22 |
import json
|
| 23 |
import time # Added for history update delay
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
SYSTEM_PROMPT = '''
|
| 26 |
# Edit Instruction Rewriter
|
| 27 |
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
|
|
@@ -141,7 +171,7 @@ Do NOT include JSON formatting or additional explanations.
|
|
| 141 |
'''
|
| 142 |
|
| 143 |
# --- Prompt Enhancement using Hugging Face InferenceClient ---
|
| 144 |
-
def polish_prompt_hf(
|
| 145 |
"""
|
| 146 |
Rewrites the prompt using a Hugging Face InferenceClient.
|
| 147 |
"""
|
|
@@ -149,13 +179,13 @@ def polish_prompt_hf(prompt, img_list):
|
|
| 149 |
api_key = os.environ.get("HF_TOKEN")
|
| 150 |
if not api_key:
|
| 151 |
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
|
| 152 |
-
return
|
| 153 |
|
| 154 |
try:
|
| 155 |
# Initialize the client
|
| 156 |
-
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {
|
| 157 |
client = InferenceClient(
|
| 158 |
-
provider="
|
| 159 |
api_key=api_key,
|
| 160 |
)
|
| 161 |
|
|
@@ -171,7 +201,7 @@ def polish_prompt_hf(prompt, img_list):
|
|
| 171 |
|
| 172 |
# Call the API
|
| 173 |
completion = client.chat.completions.create(
|
| 174 |
-
model="Qwen/
|
| 175 |
messages=messages,
|
| 176 |
)
|
| 177 |
|
|
@@ -179,7 +209,7 @@ def polish_prompt_hf(prompt, img_list):
|
|
| 179 |
result = completion.choices[0].message.content
|
| 180 |
|
| 181 |
# Try to extract JSON if present
|
| 182 |
-
if '
|
| 183 |
try:
|
| 184 |
# Clean up the response
|
| 185 |
result = result.replace('```json', '').replace('```', '')
|
|
@@ -196,7 +226,7 @@ def polish_prompt_hf(prompt, img_list):
|
|
| 196 |
except Exception as e:
|
| 197 |
print(f"Error during API call to Hugging Face: {e}")
|
| 198 |
# Fallback to original prompt if enhancement fails
|
| 199 |
-
return
|
| 200 |
|
| 201 |
def next_scene_prompt(original_prompt, img_list):
|
| 202 |
"""
|
|
@@ -445,7 +475,8 @@ def infer(
|
|
| 445 |
).images
|
| 446 |
|
| 447 |
# Return images, seed, and make button visible
|
| 448 |
-
return image, seed, gr.update(visible=True)
|
|
|
|
| 449 |
|
| 450 |
# --- Examples and UI Layout ---
|
| 451 |
examples = []
|
|
@@ -544,8 +575,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 544 |
|
| 545 |
with gr.Column():
|
| 546 |
result = gr.Gallery(label="Result", show_label=False, type="pil")
|
| 547 |
-
|
| 548 |
-
|
|
|
|
|
|
|
| 549 |
|
| 550 |
with gr.Row():
|
| 551 |
gr.Markdown("### 📜 History")
|
|
@@ -583,7 +616,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 583 |
width,
|
| 584 |
rewrite_prompt,
|
| 585 |
],
|
| 586 |
-
outputs=[result, seed, use_output_btn],
|
|
|
|
| 587 |
).then(
|
| 588 |
fn=update_history,
|
| 589 |
inputs=[result, history_gallery],
|
|
@@ -615,5 +649,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 615 |
|
| 616 |
input_images.change(fn=suggest_next_scene_prompt, inputs=[input_images], outputs=[prompt])
|
| 617 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 618 |
if __name__ == "__main__":
|
| 619 |
demo.launch()
|
|
|
|
| 22 |
import json
|
| 23 |
import time # Added for history update delay
|
| 24 |
|
| 25 |
+
from gradio_client import Client, handle_file
|
| 26 |
+
import tempfile
|
| 27 |
+
|
| 28 |
+
def turn_into_video(input_images, output_images, prompt):
|
| 29 |
+
"""Calls multimodalart/wan-2-2-first-last-frame space to generate a video."""
|
| 30 |
+
if not input_images or not output_images:
|
| 31 |
+
raise gr.Error("Please generate at least one result first.")
|
| 32 |
+
|
| 33 |
+
# Take the first input and first output frame
|
| 34 |
+
start_img = input_images[0][0] if isinstance(input_images[0], tuple) else input_images[0]
|
| 35 |
+
end_img = output_images[0]
|
| 36 |
+
|
| 37 |
+
# Save them temporarily
|
| 38 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_start, \
|
| 39 |
+
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_end:
|
| 40 |
+
start_img.save(tmp_start.name)
|
| 41 |
+
end_img.save(tmp_end.name)
|
| 42 |
+
|
| 43 |
+
client = Client("multimodalart/wan-2-2-first-last-frame")
|
| 44 |
+
|
| 45 |
+
# Run inference on the remote space
|
| 46 |
+
result = client.predict(
|
| 47 |
+
start_image_pil={"image": handle_file(tmp_start.name)},
|
| 48 |
+
end_image_pil={"image": handle_file(tmp_end.name)},
|
| 49 |
+
prompt=prompt or "generate smooth cinematic transition",
|
| 50 |
+
api_name="/generate_video" # must match the remote Space’s API function name
|
| 51 |
+
)
|
| 52 |
+
return result, gr.update(visible=True)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
SYSTEM_PROMPT = '''
|
| 56 |
# Edit Instruction Rewriter
|
| 57 |
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
|
|
|
|
| 171 |
'''
|
| 172 |
|
| 173 |
# --- Prompt Enhancement using Hugging Face InferenceClient ---
|
| 174 |
+
def polish_prompt_hf(original_prompt, img_list):
|
| 175 |
"""
|
| 176 |
Rewrites the prompt using a Hugging Face InferenceClient.
|
| 177 |
"""
|
|
|
|
| 179 |
api_key = os.environ.get("HF_TOKEN")
|
| 180 |
if not api_key:
|
| 181 |
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
|
| 182 |
+
return original_prompt
|
| 183 |
|
| 184 |
try:
|
| 185 |
# Initialize the client
|
| 186 |
+
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {original_prompt}\n\nRewritten Prompt:"
|
| 187 |
client = InferenceClient(
|
| 188 |
+
provider="nebius",
|
| 189 |
api_key=api_key,
|
| 190 |
)
|
| 191 |
|
|
|
|
| 201 |
|
| 202 |
# Call the API
|
| 203 |
completion = client.chat.completions.create(
|
| 204 |
+
model="Qwen/Qwen2.5-VL-72B-Instruct",
|
| 205 |
messages=messages,
|
| 206 |
)
|
| 207 |
|
|
|
|
| 209 |
result = completion.choices[0].message.content
|
| 210 |
|
| 211 |
# Try to extract JSON if present
|
| 212 |
+
if '"Rewritten"' in result:
|
| 213 |
try:
|
| 214 |
# Clean up the response
|
| 215 |
result = result.replace('```json', '').replace('```', '')
|
|
|
|
| 226 |
except Exception as e:
|
| 227 |
print(f"Error during API call to Hugging Face: {e}")
|
| 228 |
# Fallback to original prompt if enhancement fails
|
| 229 |
+
return original_prompt
|
| 230 |
|
| 231 |
def next_scene_prompt(original_prompt, img_list):
|
| 232 |
"""
|
|
|
|
| 475 |
).images
|
| 476 |
|
| 477 |
# Return images, seed, and make button visible
|
| 478 |
+
return image, seed, gr.update(visible=True), gr.update(visible=True)
|
| 479 |
+
|
| 480 |
|
| 481 |
# --- Examples and UI Layout ---
|
| 482 |
examples = []
|
|
|
|
| 575 |
|
| 576 |
with gr.Column():
|
| 577 |
result = gr.Gallery(label="Result", show_label=False, type="pil")
|
| 578 |
+
with gr.Row():
|
| 579 |
+
use_output_btn = gr.Button("↗️ Use as input", variant="secondary", size="sm", visible=False)
|
| 580 |
+
turn_video_btn = gr.Button("🎬 Turn into Video", variant="secondary", size="sm", visible=False)
|
| 581 |
+
output_video = gr.Video(label="Generated Video", autoplay=True, visible=False)
|
| 582 |
|
| 583 |
with gr.Row():
|
| 584 |
gr.Markdown("### 📜 History")
|
|
|
|
| 616 |
width,
|
| 617 |
rewrite_prompt,
|
| 618 |
],
|
| 619 |
+
outputs=[result, seed, use_output_btn, turn_video_btn],
|
| 620 |
+
|
| 621 |
).then(
|
| 622 |
fn=update_history,
|
| 623 |
inputs=[result, history_gallery],
|
|
|
|
| 649 |
|
| 650 |
input_images.change(fn=suggest_next_scene_prompt, inputs=[input_images], outputs=[prompt])
|
| 651 |
|
| 652 |
+
turn_video_btn.click(
|
| 653 |
+
fn=turn_into_video,
|
| 654 |
+
inputs=[input_images, result, prompt],
|
| 655 |
+
outputs=[output_video, output_video],
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
|
| 659 |
if __name__ == "__main__":
|
| 660 |
demo.launch()
|