File size: 12,683 Bytes
69a1bb9
44d8da2
 
 
 
 
7dede7c
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08aaa9c
7dede7c
e2b49c1
 
 
 
 
 
 
 
 
 
 
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dede7c
44d8da2
08aaa9c
7dede7c
e2b49c1
 
 
 
 
 
 
 
 
 
 
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dede7c
44d8da2
 
08aaa9c
44d8da2
e2b49c1
 
 
 
 
 
 
 
 
 
 
 
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dede7c
 
 
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b49c1
 
 
 
 
 
 
 
 
44d8da2
 
 
 
 
 
 
 
 
08aaa9c
7dede7c
e2b49c1
 
 
 
 
 
 
 
 
 
 
 
 
 
44d8da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b49c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import spaces
import gradio as gr
import numpy as np
import torch
from transformers import SamModel, SamProcessor
from PIL import Image
import os
import cv2
import argparse
import sys
# This is for making model initialization faster and has no effect since we are loading the weights
sys.path.append('./')
from videollama3 import disable_torch_init, model_init, mm_infer, get_model_output
from videollama3.mm_utils import load_images
from videollama3.mm_utils import load_video


color_rgb = (1.0, 1.0, 1.0)
color_rgbs = [
        (1.0, 1.0, 1.0),
        (1.0, 0.0, 0.0),
        (0.0, 1.0, 1.0),
        (0.0, 1.0, 0.0),
        (0.0, 0.0, 1.0),
        (1.0, 0.0, 1.0),
    ]

def extract_first_frame_from_video(video):
    cap = cv2.VideoCapture(video)
    success, frame = cap.read()
    cap.release()
    if success:
        return Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    return None

def extract_points_from_mask(mask_pil):
    mask = np.asarray(mask_pil)[..., 0]
    coords = np.nonzero(mask)
    coords = np.stack((coords[1], coords[0]), axis=1)

    return coords

def add_contour(img, mask, color=(1., 1., 1.)):
    img = img.copy()

    mask = mask.astype(np.uint8) * 255
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cv2.drawContours(img, contours, -1, color, thickness=8)

    return img

@spaces.GPU(duration=120)
def generate_masks(image, mask_list, mask_raw_list):
    """
    Generate masks from user-drawn annotations on an image.
    
    Args:
        image: Dictionary containing the image editor state with background and layers
        mask_list: List of generated mask images with labels
        mask_raw_list: List of raw numpy arrays of masks
        
    Returns:
        Tuple containing updated mask_list, image editor state, mask_list, and mask_raw_list
    """
    image['image'] = image['background'].convert('RGB')
    # del image['background'], image['composite']
    assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"

    mask = Image.fromarray((np.asarray(image['layers'][0])[..., 3] > 0).astype(np.uint8) * 255).convert('RGB')
    points = extract_points_from_mask(mask)
    np.random.seed(0)
    if points.shape[0] == 0:
        raise gr.Error("No points selected")

    points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
    points = points[points_selected_indices]
    coords = [points.tolist()]
    mask_np = apply_sam(image['image'], coords)

    mask_raw_list.append(mask_np)
    mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(image['image'])).astype(np.uint8))
    
    mask_list.append((mask_image, f"<region{len(mask_list)}>"))
    # Return a list containing the mask image.
    image['layers'] = []
    image['composite'] = image['background']
    return mask_list, image, mask_list, mask_raw_list

@spaces.GPU(duration=120)
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
    """
    Generate masks from user-drawn annotations on a video frame.
    
    Args:
        image: Dictionary containing the image editor state with background and layers
        mask_list_video: List of generated mask images with labels for video
        mask_raw_list_video: List of raw numpy arrays of masks for video
        
    Returns:
        Tuple containing updated mask_list_video, image editor state, mask_list_video, and mask_raw_list_video
    """
    image['image'] = image['background'].convert('RGB')
    # del image['background'], image['composite']
    assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"

    mask = Image.fromarray((np.asarray(image['layers'][0])[..., 3] > 0).astype(np.uint8) * 255).convert('RGB')
    points = extract_points_from_mask(mask)
    np.random.seed(0)
    if points.shape[0] == 0:
        raise gr.Error("No points selected")

    points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
    points = points[points_selected_indices]
    coords = [points.tolist()]
    mask_np = apply_sam(image['image'], coords)

    mask_raw_list_video.append(mask_np)
    mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(image['image'])).astype(np.uint8))
    
    mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
    # Return a list containing the mask image.
    image['layers'] = []
    image['composite'] = image['background']
    return mask_list_video, image, mask_list_video, mask_raw_list_video


@spaces.GPU(duration=120)
def describe(image, mode, query, masks):
    """
    Generate descriptions or answer questions about regions in an image.
    
    Args:
        image: Dictionary containing the image editor state
        mode: Either "Caption" or "QA" mode
        query: Question to ask about the image (used in QA mode)
        masks: List of mask arrays for the regions
        
    Returns:
        Generator yielding image with contours, generated text, and updated image state
    """
    # Create an image object from the uploaded image
    # print(image.keys())

    image['image'] = image['background'].convert('RGB')
    # del image['background'], image['composite']
    assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"

    # Handle both hex and rgba color formats
    
    img_np = np.asarray(image['image']).astype(float) / 255.
    if mode=='Caption':
        mask = Image.fromarray((np.asarray(image['layers'][0])[..., 3] > 0).astype(np.uint8) * 255).convert('RGB')
        
        points = extract_points_from_mask(mask)

        np.random.seed(0)

        if points.shape[0] == 0:
            if len(masks)>1:
                raise gr.Error("No points selected")

        else:
            # Randomly sample 8 points from the mask
            # Follow DAM https://github.com/NVlabs/describe-anything
            points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
            points = points[points_selected_indices]

            coords = [points.tolist()]

            mask_np = apply_sam(image['image'], coords)
            
            masks = []
            masks.append(mask_np)
        mask_ids = [0]
        
        img_with_contour_np = add_contour(img_np, mask_np, color=color_rgb)
        img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.).astype(np.uint8))
    else:
        img_with_contour_np = img_np.copy()

        mask_ids = []
        for i, mask_np in enumerate(masks):
            # img_with_contour_np = add_contour(img_with_contour_np, mask_np, color=color_rgbs[i])
            # img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.).astype(np.uint8))
            img_with_contour_pil = Image.fromarray((img_with_contour_np* 255.).astype(np.uint8))
            mask_ids.append(0)
    
    masks = np.stack(masks, axis=0)
    masks = torch.from_numpy(masks).to(torch.uint8)


    
    img = np.asarray(image['image'])
    

    if mode == "Caption":
        query = '<image>\nPlease describe the <region> in the image in detail.'
    else:
        if len(masks)==1:
            prefix = "<image>\nThere is 1 region in the image: <region0> <region>. "
        else:
            prefix = f"<image>\nThere is {len(masks)} region in the image: "
            for i in range(len(masks)):
                prefix += f"<region{i}><region>, "
            prefix = prefix[:-2]+'. '
        query = prefix + query
    # print(query)

    image['layers'] = []
    image['composite'] = image['background']

    text = ""
    yield img_with_contour_pil, text, image
    
    for token in get_model_output(
        [img],
        query,
        model=model,
        tokenizer=tokenizer,
        masks=masks,
        mask_ids=mask_ids,
        modal='image',
        image_downsampling=1,
        streaming=True,
    ):
        text += token
        yield gr.update(), text, gr.update()

  
def load_first_frame(video_path):
    """
    Load and return the first frame of a video.
    
    Args:
        video_path: Path to the video file
        
    Returns:
        PIL Image of the first frame
    """
    cap = cv2.VideoCapture(video_path)
    ret, frame = cap.read()
    cap.release()
    if not ret:
        raise gr.Error("Could not read the video file.")
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(frame)  
    return image

@spaces.GPU(duration=120)
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
    """
    Generate descriptions or answer questions about regions in a video.
    
    Args:
        video_path: Path to the video file
        mode: Either "Caption" or "QA" mode
        query: Question to ask about the video (used in QA mode)
        annotated_frame: Dictionary containing the annotated first frame
        masks: List of mask arrays for the regions
        mask_list_video: List of mask images with labels
        
    Returns:
        Generator yielding frame image, generated text, and updated mask lists
    """
    # Create a temporary directory to save extracted video frames
    cap = cv2.VideoCapture(video_path)

    video_tensor = load_video(video_path, fps=4, max_frames=768, frame_ids=[0])

    annotated_frame['image'] = annotated_frame['background'].convert('RGB')

    # Process the annotated frame from the image editor
    if isinstance(annotated_frame, dict):
        # Get the composite image with annotations
        frame_img = annotated_frame.get("image", annotated_frame.get("background"))
        if frame_img is None:
            raise gr.Error("No valid annotation found in the image editor.")
        frame_img = frame_img.convert("RGB")
        
        # Get the annotation layer
        if "layers" in annotated_frame and len(annotated_frame["layers"]) > 0:
            mask = Image.fromarray((np.asarray(annotated_frame["layers"][0])[..., 3] > 0).astype(np.uint8) * 255).convert("RGB")
        else:
            mask = Image.new("RGB", frame_img.size, 0)
    else:
        frame_img = annotated_frame.convert("RGB")
        mask = Image.new("RGB", frame_img.size, 0)

    img_np = np.asarray(annotated_frame['image']).astype(float) / 255.
    # Extract points from the annotated mask (using the first channel)
    if mode == "Caption":
        points = extract_points_from_mask(mask)
        np.random.seed(0)
        if points.shape[0] == 0:
            raise gr.Error("No points were selected in the annotation.")
        # Randomly select up to 8 points
        # Follow DAM https://github.com/NVlabs/describe-anything
        points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
        points = points[points_selected_indices]

        # print(f"Selected points (to SAM): {points}")

        coords = [points.tolist()]

        mask_np = apply_sam(annotated_frame['image'], coords)
    
        masks = []
        masks.append(mask_np)
        mask_ids = [0]

        # img_with_contour_np = add_contour(img_np, mask_np, color=color_rgb)
        # img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.).astype(np.uint8))


    else:
        img_with_contour_np = img_np.copy()
        
        mask_ids = []
        for i, mask_np in enumerate(masks):
            # img_with_contour_np = add_contour(img_with_contour_np, mask_np, color=color_rgbs[i])
            # img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.).astype(np.uint8))
            mask_ids.append(0)
    


    masks = np.stack(masks, axis=0)
    masks = torch.from_numpy(masks).to(torch.uint8)


    

    if mode == "Caption":
        query = '<video>\nPlease describe the <region> in the video in detail.'
    else:
        if len(masks)==1:
            prefix = "<video>\nThere is 1 object in the video: <object0> <region>. "
        else:
            prefix = f"<video>\nThere is {len(masks)} objects in the video: "
            for i in range(len(masks)):
                prefix += f"<object{i}><region>, "
            prefix = prefix[:-2]+'. '
        query = prefix + query
    
    # Initialize empty text
    # text = description_generator
    annotated_frame['layers'] = []
    annotated_frame['composite'] = annotated_frame['background']

    if mode=="Caption":
        mask_list_video = []
        mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(annotated_frame['image'])).astype(np.uint8))
        mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
    text = ""
    yield frame_img, text, mask_list_video, mask_list_video