Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for VideoLLaMA3. | |
""" | |
import copy | |
import math | |
import warnings | |
from typing import List, Union, Dict, Optional | |
import torch | |
from transformers.feature_extraction_utils import BatchFeature | |
from transformers.image_utils import ImageInput, VideoInput | |
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack | |
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput | |
import sys | |
sys.path.append(".") | |
from videollama3.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX | |
DEFAULT_CHAT_TEMPLATE = """ | |
{%- set identifier = 'im' %} | |
{% for message in messages %} | |
{% if message['role'] == 'stream' %} | |
{% set identifier = 'stream' %} | |
{% else %} | |
{% set identifier = 'im' %} | |
{% endif %} | |
{{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}} | |
{% if message['content'] is string %} | |
{{- message['content'] + '<|' + identifier + '_end|>\n' -}} | |
{% else %} | |
{% for content in message['content'] %} | |
{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %} | |
{% if 'time' in content %} | |
{{- 'Time ' + content['time'] | round(1) | string + 's: ' -}} | |
{% endif %} | |
""" | |
DEFAULT_CHAT_TEMPLATE += """ | |
{{- '%s\n' -}} | |
""" % DEFAULT_IMAGE_TOKEN | |
DEFAULT_CHAT_TEMPLATE += """ | |
{% elif content['type'] == 'video' or 'video' in content or 'video_url' in content %} | |
{% for i in range(content['num_frames']) %} | |
{% if 'time' in content %} | |
{{- 'Time ' + content['time'][i] | round(1) | string + 's:' -}} | |
{% endif %} | |
{% if i < content['num_frames'] - 1 %} | |
""" | |
DEFAULT_CHAT_TEMPLATE += """ | |
{{- '%s,' -}} | |
""" % DEFAULT_IMAGE_TOKEN | |
DEFAULT_CHAT_TEMPLATE += """ | |
{% else %} | |
""" | |
DEFAULT_CHAT_TEMPLATE += """ | |
{{- '%s\n' -}} | |
""" % DEFAULT_IMAGE_TOKEN | |
DEFAULT_CHAT_TEMPLATE += """ | |
{% endif %} | |
{% endfor %} | |
{% elif 'text' in content %} | |
{{- content['text'] -}} | |
{% endif %} | |
{% endfor %} | |
{{- '<|' + identifier + '_end|>\n' -}} | |
{% endif %} | |
{% endfor %} | |
{% if add_generation_prompt %} | |
{{- '<|im_start|>assistant\n' -}} | |
{% endif %} | |
""" | |
class Videollama3ProcessorKwargs(ProcessingKwargs, total=False): | |
_defaults = { | |
"text_kwargs": { | |
"padding": False, | |
}, | |
} | |
class Videollama3Processor(ProcessorMixin): | |
r""" | |
Modified from Qwen2VLProcessor | |
Args: | |
image_processor ([`Qwen2VLImageProcessor`], *optional*): | |
The image processor is a required input. | |
tokenizer ([`Qwen2TokenizerFast`], *optional*): | |
The tokenizer is a required input. | |
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages | |
in a chat into a tokenizable string. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
valid_kwargs = ["chat_template"] | |
image_processor_class = "Qwen2VLImageProcessor" | |
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") | |
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs): | |
if chat_template is None: | |
chat_template = DEFAULT_CHAT_TEMPLATE | |
# super().__init__(image_processor, tokenizer, chat_template=chat_template) | |
tokenizer.chat_template = chat_template | |
self.image_processor = image_processor | |
self.tokenizer = tokenizer | |
self.generation_prompt = self._infer_generation_prompt() | |
self.generation_prompt_ids = self.tokenizer.encode(self.generation_prompt, return_tensors="pt") | |
self.generation_prompt_length = len(self.generation_prompt_ids[0]) | |
self.image_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN) | |
self.eos_token_id = self.tokenizer.eos_token_id | |
def get_generation_prompt(self): | |
return self.generation_prompt | |
def get_generation_prompt_ids(self): | |
return self.generation_prompt_ids | |
def _infer_generation_prompt(self): | |
pseudo_message = [{"role": "user", "content": ""}] | |
instruction = self.tokenizer.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=True) | |
conversation = self.tokenizer.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=False) | |
return instruction.replace(conversation, "") | |
def _process_text_with_label( | |
self, | |
text: List[Dict], | |
image_grid_thw: torch.Tensor = None, | |
image_downsampling: Optional[int] = None, | |
**kwargs, | |
): | |
assert kwargs.pop("return_tensors", "pt") == "pt", "Only PyTorch tensors are supported when return_labels=True." | |
assert isinstance(text[0], dict), "When return_labels=True, text must be a list of messages." | |
input_ids_list = [] | |
targets_list = [] | |
sample_types_list = [] | |
image_idx = 0 | |
for message_idx, message in enumerate(text): | |
# 1. set chat template and append image tokens | |
prompt = self.tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=False) | |
prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN) | |
prompt = [] | |
for chunk_idx in range(len(prompt_chunks) - 1): | |
prompt.append(prompt_chunks[chunk_idx]) | |
thw = image_grid_thw[image_idx] | |
prompt.append(DEFAULT_IMAGE_TOKEN * (thw.prod() / image_downsampling**2).long()) | |
image_idx += 1 | |
prompt.append(prompt_chunks[-1]) | |
prompt = "".join(prompt) | |
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")[0] | |
input_ids_list.append(input_ids) | |
targets = torch.full_like(input_ids, IGNORE_INDEX) | |
sample_types = torch.full_like(input_ids, IGNORE_INDEX) | |
if message["role"] == "assistant": | |
targets[self.generation_prompt_length:-1] = input_ids[self.generation_prompt_length:-1].clone() | |
elif message["role"] == "stream": | |
diff = torch.diff((input_ids == self.image_token_id).float()) | |
image_end_indices = torch.nonzero(diff < 0)[:, 0] | |
targets[image_end_indices + 1] = input_ids[image_end_indices + 1] | |
sample_types = targets.clone() | |
sample_types[torch.logical_and(sample_types > 0, sample_types != self.eos_token_id)] = 0 | |
targets[-2] = input_ids[-2] # <|im_end|> | |
# if message_idx > 0 and text[message_idx - 1]["role"] == "stream": | |
# targets[0] = input_ids[0] | |
# # TODO: consider non-special tokens | |
# sample_types[0] = input_ids[0] | |
targets_list.append(targets) | |
sample_types_list.append(sample_types) | |
assert len(image_grid_thw) == image_idx, "Number of images does not match the number of image tokens in the text." | |
targets = torch.cat(targets_list) | |
sample_types = torch.cat(sample_types_list) | |
types, counts = torch.unique(sample_types[sample_types > -1], return_counts=True) | |
if len(types) > 0: | |
target_num_samples = counts.amin() | |
for type_id, type_count in zip(types, counts): | |
if type_count > target_num_samples: | |
indices = torch.nonzero(sample_types == type_id)[:, 0] | |
random_selector = torch.randperm(indices.size(0))[:-target_num_samples] | |
targets[indices[random_selector]] = IGNORE_INDEX | |
sample_types[indices[random_selector]] = -1 | |
text_inputs = { | |
"input_ids": torch.cat(input_ids_list), | |
"labels": targets, | |
} | |
return text_inputs | |
def _process_text_without_label( | |
self, | |
text: Union[List[str], List[Dict]], | |
image_grid_thw: torch.Tensor = None, | |
image_downsampling: Optional[int] = None, | |
**kwargs, | |
): | |
if isinstance(text[0], dict): | |
warnings.warn("Input text is a list of messages. Automatically convert it to a string with 'apply_chat_template' with generation prompt.") | |
text = [self.tokenizer.apply_chat_template(text, tokenize=False, add_generation_prompt=True)] | |
image_idx = 0 | |
for i in range(len(text)): | |
while DEFAULT_IMAGE_TOKEN in text[i]: | |
thw = image_grid_thw[image_idx] | |
text[i] = text[i].replace(DEFAULT_IMAGE_TOKEN, "<placeholder>" * (thw.prod() / image_downsampling**2).long(), 1) | |
image_idx += 1 | |
text[i] = text[i].replace("<placeholder>", DEFAULT_IMAGE_TOKEN) | |
assert len(image_grid_thw) == image_idx, "Number of images does not match the number of image tokens in the text." | |
text_inputs = self.tokenizer(text, **kwargs) | |
return text_inputs | |
def _process_text( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[Dict]], | |
image_grid_thw: torch.Tensor = None, | |
image_downsampling: Optional[int] = None, | |
return_labels: bool = False, | |
**kwargs, | |
): | |
if not isinstance(text, (list, tuple)): | |
text = [text] | |
assert len(text), "At least one text must be provided." | |
if return_labels: | |
return self._process_text_with_label(text, image_grid_thw, image_downsampling, **kwargs) | |
return self._process_text_without_label(text, image_grid_thw, image_downsampling, **kwargs) | |
def _process_image( | |
self, | |
images: ImageInput = None, | |
image_downsampling: Optional[int] = None, | |
**kwargs, | |
): | |
if image_downsampling is None: | |
image_downsampling = self.image_processor.merge_size | |
image_inputs = { | |
"images": [], | |
"grid_thws": [], | |
"image_downsampling": image_downsampling | |
} | |
if images is not None and len(images) > 0: | |
num_images = kwargs.get('num_images', len(images)) | |
if 'num_images' in kwargs: | |
kwargs.pop('num_images') | |
for image in images: | |
outputs = self.image_processor(images=image, num_images=num_images, image_downsampling=image_downsampling, **kwargs) | |
# images shapes like: [tensor([patches, 1176]), ...] | |
# grid_thws shapes like: tensor([num_images, 3]) | |
# flatten_patches1 = outputs["pixel_values"].reshape(26, 46, 3, -1) | |
# from matplotlib import pyplot as plt | |
# plt.imshow(flatten_patches1[:,:,:,0]) | |
# plt.savefig('9.png') | |
image_inputs["images"].append(outputs["pixel_values"]) #正常的 | |
# flatten_patches1 = image_inputs["images"][0].reshape(26, 46, 3, -1) | |
# from matplotlib import pyplot as plt | |
# plt.imshow(flatten_patches1[:,:,:,0]) | |
# plt.savefig('12.png') | |
image_inputs["grid_thws"].append(outputs["image_grid_thw"]) | |
return image_inputs | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[Dict]] = None, | |
images: ImageInput = None, | |
image_downsampling: Optional[int] = None, | |
return_labels: bool = False, | |
**kwargs: Unpack[Videollama3ProcessorKwargs], | |
) -> BatchFeature: | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to | |
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`. | |
Args: | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. Both channels-first and channels-last formats are supported. | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`. | |
""" | |
output_kwargs = self._merge_kwargs( | |
Videollama3ProcessorKwargs, | |
tokenizer_init_kwargs=self.tokenizer.init_kwargs, | |
**kwargs, | |
) | |
output_kwargs["text_kwargs"].pop("padding") | |
output_kwargs["text_kwargs"].pop("padding_side") | |
image_inputs = self._process_image(images, image_downsampling, **output_kwargs["images_kwargs"]) | |
text_inputs = self._process_text(text, image_inputs["grid_thws"], image_downsampling, return_labels, **output_kwargs["text_kwargs"]) | |
return BatchFeature(data={**text_inputs, **image_inputs}) | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |