lixin4ever's picture
init (#1)
44d8da2 verified
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for VideoLLaMA3.
"""
import copy
import math
import warnings
from typing import List, Union, Dict, Optional
import torch
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, VideoInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
import sys
sys.path.append(".")
from videollama3.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX
DEFAULT_CHAT_TEMPLATE = """
{%- set identifier = 'im' %}
{% for message in messages %}
{% if message['role'] == 'stream' %}
{% set identifier = 'stream' %}
{% else %}
{% set identifier = 'im' %}
{% endif %}
{{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}}
{% if message['content'] is string %}
{{- message['content'] + '<|' + identifier + '_end|>\n' -}}
{% else %}
{% for content in message['content'] %}
{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}
{% if 'time' in content %}
{{- 'Time ' + content['time'] | round(1) | string + 's: ' -}}
{% endif %}
"""
DEFAULT_CHAT_TEMPLATE += """
{{- '%s\n' -}}
""" % DEFAULT_IMAGE_TOKEN
DEFAULT_CHAT_TEMPLATE += """
{% elif content['type'] == 'video' or 'video' in content or 'video_url' in content %}
{% for i in range(content['num_frames']) %}
{% if 'time' in content %}
{{- 'Time ' + content['time'][i] | round(1) | string + 's:' -}}
{% endif %}
{% if i < content['num_frames'] - 1 %}
"""
DEFAULT_CHAT_TEMPLATE += """
{{- '%s,' -}}
""" % DEFAULT_IMAGE_TOKEN
DEFAULT_CHAT_TEMPLATE += """
{% else %}
"""
DEFAULT_CHAT_TEMPLATE += """
{{- '%s\n' -}}
""" % DEFAULT_IMAGE_TOKEN
DEFAULT_CHAT_TEMPLATE += """
{% endif %}
{% endfor %}
{% elif 'text' in content %}
{{- content['text'] -}}
{% endif %}
{% endfor %}
{{- '<|' + identifier + '_end|>\n' -}}
{% endif %}
{% endfor %}
{% if add_generation_prompt %}
{{- '<|im_start|>assistant\n' -}}
{% endif %}
"""
class Videollama3ProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
}
class Videollama3Processor(ProcessorMixin):
r"""
Modified from Qwen2VLProcessor
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "Qwen2VLImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
if chat_template is None:
chat_template = DEFAULT_CHAT_TEMPLATE
# super().__init__(image_processor, tokenizer, chat_template=chat_template)
tokenizer.chat_template = chat_template
self.image_processor = image_processor
self.tokenizer = tokenizer
self.generation_prompt = self._infer_generation_prompt()
self.generation_prompt_ids = self.tokenizer.encode(self.generation_prompt, return_tensors="pt")
self.generation_prompt_length = len(self.generation_prompt_ids[0])
self.image_token_id = self.tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
self.eos_token_id = self.tokenizer.eos_token_id
def get_generation_prompt(self):
return self.generation_prompt
def get_generation_prompt_ids(self):
return self.generation_prompt_ids
def _infer_generation_prompt(self):
pseudo_message = [{"role": "user", "content": ""}]
instruction = self.tokenizer.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=True)
conversation = self.tokenizer.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=False)
return instruction.replace(conversation, "")
def _process_text_with_label(
self,
text: List[Dict],
image_grid_thw: torch.Tensor = None,
image_downsampling: Optional[int] = None,
**kwargs,
):
assert kwargs.pop("return_tensors", "pt") == "pt", "Only PyTorch tensors are supported when return_labels=True."
assert isinstance(text[0], dict), "When return_labels=True, text must be a list of messages."
input_ids_list = []
targets_list = []
sample_types_list = []
image_idx = 0
for message_idx, message in enumerate(text):
# 1. set chat template and append image tokens
prompt = self.tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=False)
prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN)
prompt = []
for chunk_idx in range(len(prompt_chunks) - 1):
prompt.append(prompt_chunks[chunk_idx])
thw = image_grid_thw[image_idx]
prompt.append(DEFAULT_IMAGE_TOKEN * (thw.prod() / image_downsampling**2).long())
image_idx += 1
prompt.append(prompt_chunks[-1])
prompt = "".join(prompt)
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")[0]
input_ids_list.append(input_ids)
targets = torch.full_like(input_ids, IGNORE_INDEX)
sample_types = torch.full_like(input_ids, IGNORE_INDEX)
if message["role"] == "assistant":
targets[self.generation_prompt_length:-1] = input_ids[self.generation_prompt_length:-1].clone()
elif message["role"] == "stream":
diff = torch.diff((input_ids == self.image_token_id).float())
image_end_indices = torch.nonzero(diff < 0)[:, 0]
targets[image_end_indices + 1] = input_ids[image_end_indices + 1]
sample_types = targets.clone()
sample_types[torch.logical_and(sample_types > 0, sample_types != self.eos_token_id)] = 0
targets[-2] = input_ids[-2] # <|im_end|>
# if message_idx > 0 and text[message_idx - 1]["role"] == "stream":
# targets[0] = input_ids[0]
# # TODO: consider non-special tokens
# sample_types[0] = input_ids[0]
targets_list.append(targets)
sample_types_list.append(sample_types)
assert len(image_grid_thw) == image_idx, "Number of images does not match the number of image tokens in the text."
targets = torch.cat(targets_list)
sample_types = torch.cat(sample_types_list)
types, counts = torch.unique(sample_types[sample_types > -1], return_counts=True)
if len(types) > 0:
target_num_samples = counts.amin()
for type_id, type_count in zip(types, counts):
if type_count > target_num_samples:
indices = torch.nonzero(sample_types == type_id)[:, 0]
random_selector = torch.randperm(indices.size(0))[:-target_num_samples]
targets[indices[random_selector]] = IGNORE_INDEX
sample_types[indices[random_selector]] = -1
text_inputs = {
"input_ids": torch.cat(input_ids_list),
"labels": targets,
}
return text_inputs
def _process_text_without_label(
self,
text: Union[List[str], List[Dict]],
image_grid_thw: torch.Tensor = None,
image_downsampling: Optional[int] = None,
**kwargs,
):
if isinstance(text[0], dict):
warnings.warn("Input text is a list of messages. Automatically convert it to a string with 'apply_chat_template' with generation prompt.")
text = [self.tokenizer.apply_chat_template(text, tokenize=False, add_generation_prompt=True)]
image_idx = 0
for i in range(len(text)):
while DEFAULT_IMAGE_TOKEN in text[i]:
thw = image_grid_thw[image_idx]
text[i] = text[i].replace(DEFAULT_IMAGE_TOKEN, "<placeholder>" * (thw.prod() / image_downsampling**2).long(), 1)
image_idx += 1
text[i] = text[i].replace("<placeholder>", DEFAULT_IMAGE_TOKEN)
assert len(image_grid_thw) == image_idx, "Number of images does not match the number of image tokens in the text."
text_inputs = self.tokenizer(text, **kwargs)
return text_inputs
def _process_text(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[Dict]],
image_grid_thw: torch.Tensor = None,
image_downsampling: Optional[int] = None,
return_labels: bool = False,
**kwargs,
):
if not isinstance(text, (list, tuple)):
text = [text]
assert len(text), "At least one text must be provided."
if return_labels:
return self._process_text_with_label(text, image_grid_thw, image_downsampling, **kwargs)
return self._process_text_without_label(text, image_grid_thw, image_downsampling, **kwargs)
def _process_image(
self,
images: ImageInput = None,
image_downsampling: Optional[int] = None,
**kwargs,
):
if image_downsampling is None:
image_downsampling = self.image_processor.merge_size
image_inputs = {
"images": [],
"grid_thws": [],
"image_downsampling": image_downsampling
}
if images is not None and len(images) > 0:
num_images = kwargs.get('num_images', len(images))
if 'num_images' in kwargs:
kwargs.pop('num_images')
for image in images:
outputs = self.image_processor(images=image, num_images=num_images, image_downsampling=image_downsampling, **kwargs)
# images shapes like: [tensor([patches, 1176]), ...]
# grid_thws shapes like: tensor([num_images, 3])
# flatten_patches1 = outputs["pixel_values"].reshape(26, 46, 3, -1)
# from matplotlib import pyplot as plt
# plt.imshow(flatten_patches1[:,:,:,0])
# plt.savefig('9.png')
image_inputs["images"].append(outputs["pixel_values"]) #正常的
# flatten_patches1 = image_inputs["images"][0].reshape(26, 46, 3, -1)
# from matplotlib import pyplot as plt
# plt.imshow(flatten_patches1[:,:,:,0])
# plt.savefig('12.png')
image_inputs["grid_thws"].append(outputs["image_grid_thw"])
return image_inputs
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[Dict]] = None,
images: ImageInput = None,
image_downsampling: Optional[int] = None,
return_labels: bool = False,
**kwargs: Unpack[Videollama3ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Videollama3ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
output_kwargs["text_kwargs"].pop("padding")
output_kwargs["text_kwargs"].pop("padding_side")
image_inputs = self._process_image(images, image_downsampling, **output_kwargs["images_kwargs"])
text_inputs = self._process_text(text, image_inputs["grid_thws"], image_downsampling, return_labels, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))