lixin4ever's picture
init (#1)
44d8da2 verified
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
from abc import ABC, abstractmethod
import einops
import torch
import torch.distributed as dist
import torch.nn as nn
import numpy as np
from ..constants import IGNORE_INDEX, MODAL_INDEX_MAP, NUM_FRAMES
from .encoder import build_vision_encoder
from .projector import build_vision_projector, load_mm_projector
from .region_encoder import build_region_encoder
from ..mm_utils import reshape_images_to_raw_grid
def spatial_downsampling(features, grid_thws, strides):
n, c = features.shape
flatten_grid_thws = torch.cat([grid_thw for batch_grid_thws in grid_thws for grid_thw in batch_grid_thws])
split_sizes = [grid_thw.prod() for grid_thw in flatten_grid_thws]
features = torch.split(features, split_sizes)
flatten_strides = [stride for batch_strides in strides for stride in batch_strides]
new_features = []
for feature, grid_thw, stride in zip(features, flatten_grid_thws, flatten_strides):
# NOTE: adapted for reshape in image processor
feature = feature.view(grid_thw[0], grid_thw[1] // stride, grid_thw[2] // stride, stride, stride, c).permute(0, 1, 3, 2, 4, 5)
feature = feature.reshape(grid_thw[0], grid_thw[1], grid_thw[2], c).permute(0, 3, 1, 2)
# NOTE: previous version model is align_corners=True
new_feature = torch.nn.functional.interpolate(feature, (math.ceil(grid_thw[1] / stride), math.ceil(grid_thw[2] / stride)), mode='bilinear')
# new_feature = nn.functional.avg_pool2d(feature, stride)
# new_feature = nn.functional.max_pool2d(feature, stride)
new_features.append(new_feature.permute(0, 2, 3, 1).view(-1, c))
new_features = torch.cat(new_features)
return new_features
class Videollama3MetaModel:
def __init__(self, config):
super(Videollama3MetaModel, self).__init__(config)
if hasattr(config, "vision_encoder") or hasattr(config, "mm_vision_encoder"):
self.vision_encoder = build_vision_encoder(config, delay_load=False)
self.mm_projector = build_vision_projector(config)
self.region_encoder = build_region_encoder(config, self.vision_encoder.hidden_size)
def get_vision_encoder(self):
vision_encoder = getattr(self, 'vision_encoder', None)
if type(vision_encoder) is list:
vision_encoder = vision_encoder[0]
return vision_encoder
def get_mm_projector(self):
return self.mm_projector
def initialize_vision_modules(self, model_args, fsdp=None):
vision_encoder = model_args.vision_encoder
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_projector = model_args.pretrain_mm_projector
self.config.mm_vision_encoder = vision_encoder
if self.get_vision_encoder() is None:
vision_encoder = build_vision_encoder(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_encoder = [vision_encoder]
else:
self.vision_encoder = vision_encoder
else:
if fsdp is not None and len(fsdp) > 0:
vision_encoder = self.vision_encoder[0]
else:
vision_encoder = self.vision_encoder
# NOTE: only compatible with delay_load encoder
# vision_encoder.load_model(vision_encoder.cfg_only)
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_encoder.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_projector is not None:
if os.path.exists(pretrain_mm_projector):
is_local = True
if os.path.isdir(pretrain_mm_projector):
mm_projector_weights = load_mm_projector(pretrain_mm_projector)
else:
mm_projector_weights = torch.load(pretrain_mm_projector, map_location='cpu')
else:
# Support loading projector weights from remote HuggingFace model hub
is_local = False
pretrain_mm_projector = pretrain_mm_projector.replace('mm_projector.bin', '')
pretrain_mm_projector = pretrain_mm_projector.strip('/').strip('\\').strip()
mm_projector_weights = load_mm_projector(pretrain_mm_projector)
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
# self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
# set strict=False to avoid missing key error regarding bert.embeddings.position_ids
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False)
class Videollama3MetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def num_frames(self):
if hasattr(self.config, 'num_frames'):
return self.config.num_frames
else:
return NUM_FRAMES
def spatial_merge_size(self):
if hasattr(self.config, 'spatial_merge_size'):
return self.config.spatial_merge_size
else:
return 1
def get_vision_encoder(self):
return self.get_model().get_vision_encoder()
def get_mm_projector(self):
return self.get_model().get_mm_projector()
def encode_images(self,images, grid_thws, strides):
"""
images shape [b c h w]
"""
images_features = self.get_model().get_vision_encoder()(images, grid_thws=grid_thws, strides=strides)
# images_features = spatial_downsampling(images_features, grid_thws, stride=self.config.spatial_merge_size)
mm_features = spatial_downsampling(images_features, grid_thws, strides=strides)
images_features = self.get_model().mm_projector(mm_features)
return images_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, attention_mask, past_key_values, labels, images, position_ids=None, masks=None, additional_images = None,
):
if self.config.use_token_compression:
return self.prepare_inputs_labels_for_multimodal_with_compression(input_ids, attention_mask, past_key_values, labels, images, position_ids, masks, additional_images)
# # images shape (modal, tensor, flag)
# vision_encoder = self.get_vision_encoder()
# # NOTE: text-only situation
# if vision_encoder is None or images is None or input_ids.shape[1] == 1:
# return input_ids, attention_mask, past_key_values, None, labels, position_ids
# # NOTE: Equvialent to the following code:
# # images_tensor = [image for modal, image, image_flag, grid_thw in images]
# # images_flag = [image_flag for modal, image, image_flag, grid_thw in images]
# # grid_thws = [grid_thw for modal, image, image_flag, grid_thw in images]
# modals, images, grid_thws = zip(*images)
# images_flag = []
# strides = []
# for modal, grid_thw in zip(modals, grid_thws):
# grid_thw = torch.cat(grid_thw)
# stride = self.config.spatial_merge_size if modal == "video" else 1
# num_patches = grid_thw.prod(dim=-1).sum().div(stride**2).long()
# image_flag = torch.full((num_patches, ), 0 if modal == 'text' else 1)
# images_flag.append(image_flag)
# strides.append([stride] * grid_thw.size(0))
# images_flag_tensor = torch.cat(images_flag)
# mm_features = self.encode_images(images, grid_thws, strides)
# mm_features = mm_features[images_flag_tensor.to(mm_features.device) == 1].to(input_ids.device)
# additional_images_list = []
# additional_images_thw = []
# additional_images_strides = []
# for i in range(len(additional_images)):
# additional_images_list.append(torch.from_numpy(np.array(additional_images[0][0])).to(mm_features.dtype).to(mm_features.device))
# additional_images_thw.append(torch.tensor(additional_images[0][1][0]).to(mm_features.device))
# additional_images_strides.append([1]*len(additional_images[0][1][0]))
# image_selected = (input_ids == self.config.image_token_index)
# audio_selected = (input_ids == MODAL_INDEX_MAP['<audio>'])
# input_ids[image_selected] = 0
# input_ids[audio_selected] = 0
# input_embeds = self.get_model().embed_tokens(input_ids).clone()
# B, N, C = input_embeds.shape
# input_embeds = input_embeds.reshape(B * N, C).to(input_ids.device)
# image_selected = image_selected.reshape(B * N)
# audio_selected = audio_selected.reshape(B * N)
# input_embeds[image_selected] = input_embeds[image_selected] * 0.0 + mm_features.reshape(-1, C)
# # replace region token
# mask_selected = (input_ids == self.config.region_token_index)
# if mask_selected.sum()>0:
# additional_images_features = self.get_model().get_vision_encoder()(additional_images_list, grid_thws=[additional_images_thw], strides=additional_images_strides)
# reshaped_features = reshape_images_to_raw_grid(additional_images_features, additional_images_thw)
# mask_additional_image_features = []
# for idx in mask_ids:
# mask_additional_image_features.append(reshaped_features[idx])
# mask_feats = self.model.region_encoder(mask_additional_image_features, masks)
# input_embeds[mask_selected] = input_embeds[mask_selected]*0.0 + mask_feats
# input_embeds = input_embeds.reshape(B, N, C)
# return None, attention_mask, past_key_values, input_embeds, labels, position_ids
def prepare_inputs_labels_for_multimodal_with_compression(
self, input_ids, attention_mask, past_key_values, labels, images, position_ids=None, masks=None, additional_images = None,
):
# images shape (modal, tensor, flag)
vision_encoder = self.get_vision_encoder()
# NOTE: text-only situation
if vision_encoder is None or images is None or input_ids.shape[1] == 1:
return input_ids, attention_mask, past_key_values, None, labels, position_ids
# NOTE: Equvialent to the following code:
# images_tensor = [image for modal, image, image_flag, grid_thw in images]
# images_flag = [image_flag for modal, image, image_flag, grid_thw in images]
# grid_thws = [grid_thw for modal, image, image_flag, grid_thw in images]
modals, images, grid_thws = zip(*images)
images_flag = []
visual_masks = []
strides = []
visual_trunc_masks = []
for modal, image, grid_thw in zip(modals, images, grid_thws):
grid_thw = torch.cat(grid_thw)
stride = self.config.spatial_merge_size if modal == "video" else 1
num_patches = grid_thw.prod(dim=-1).sum().div(stride**2).long()
image_flag = torch.full((num_patches, ), 0 if modal == 'text' else 1)
images_flag.append(image_flag)
strides.append([stride] * grid_thw.size(0))
if modal == "image" or (modal == "video" and len(image) == 1):
visual_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
visual_trunc_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
elif modal == "video":
# NOTE: video frame compressor
n, h, w = len(image), grid_thw[0][1], grid_thw[0][2]
image = torch.stack(image, dim=0).view(n, (h // stride) * (w // stride), -1)
threshold = 0.1
min_tokens = 1
pixel_diff = image[1:] - image[:-1]
pixel_diff = torch.abs(pixel_diff).mean(dim=-1) * 255
pixel_diff = torch.cat([torch.full_like(pixel_diff[0:1], threshold + 1), pixel_diff], dim=0)
# if dist.get_rank() == 0:
# print(pixel_diff.shape, image.shape)
mask = pixel_diff > threshold
padding_ids = torch.nonzero(mask.sum(dim=1) < min_tokens)[:, 0]
# mask[padding_ids, torch.randperm(min_tokens)] = 1
mask[padding_ids, :min_tokens] = 1
visual_masks.append(mask.flatten())
visual_trunc_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
elif modal == "text":
visual_trunc_masks.append(torch.ones((0,), dtype=torch.bool, device=input_ids.device))
images_flag_tensor = torch.cat(images_flag)
mm_features = self.encode_images(images, grid_thws, strides)
mm_features = mm_features[images_flag_tensor.to(mm_features.device) == 1]
additional_images_list = []
additional_images_thw = []
additional_images_strides = []
if additional_images is not None: #and additional_images[0] is not None
for i in range(len(additional_images)):
for img_idx in range(len(additional_images[i][0])):
additional_images_list.append([torch.from_numpy(np.array(additional_images[i][0][img_idx])).to(mm_features.dtype).to(mm_features.device)])
additional_images_thw.append([torch.tensor(np.array(additional_images[i][1][img_idx])).to(mm_features.device)])
additional_images_strides.append([1]*len(additional_images[i][1][img_idx]))
# additional_images_list.append(additional_images[i][0])
# additional_images_thw.append(additional_images[i][1])
# additional_images_strides.append([1]*len(additional_images[i][1]))
# import pdb
# pdb.set_trace()
B, N = input_ids.shape
C = mm_features.shape[-1]
assert B == 1, "Only support batch flattening for now"
input_ids = input_ids.view(B * N)
image_selected = (input_ids == self.config.image_token_index)
audio_selected = (input_ids == MODAL_INDEX_MAP['<audio>'])
if len(visual_masks) > 0:
# if dist.get_rank() == 0:
# print(grid_thws, [x.shape for x in visual_masks])
visual_masks = torch.cat(visual_masks)
# print((visual_masks == 1).sum(), (visual_masks == 0).sum())
mm_features = mm_features[visual_masks]
# text_masks = torch.zeros_like(input_ids, dtype=torch.bool)
# text_masks[~image_selected] = True
text_masks = torch.logical_not(image_selected)
try:
text_masks[image_selected] = visual_masks
except Exception as e:
assert position_ids is not None, "Position ids must be provided when shapes mismatch"
print(
f'warning: {e}, text_masks[image_selected].shape={text_masks[image_selected].shape},',
f'visual_masks.shape={visual_masks.shape}'
)
seq_end_indices = torch.nonzero(position_ids.view(B * N) == 0)[:, 0]
seq_end_indices = seq_end_indices[seq_end_indices > 0]
seq_end_indices = seq_end_indices.tolist()+ [len(input_ids)]
seq_start_indices = [0] + seq_end_indices[:-1]
num_visual_tokens = [
input_ids[start:end].eq(self.config.image_token_index).sum()
for start, end in zip(seq_start_indices, seq_end_indices)
]
for n, mask in zip(num_visual_tokens, visual_trunc_masks):
if len(mask) > 0:
mask[n:] = False
visual_trunc_masks = torch.cat(visual_trunc_masks)
text_masks[image_selected] = visual_masks[visual_trunc_masks]
mm_features = mm_features[visual_trunc_masks[visual_masks]]
else:
text_masks = torch.ones_like(input_ids, dtype=torch.bool)
input_ids = input_ids[text_masks]
if attention_mask is not None:
attention_mask = attention_mask.view(B * N)[text_masks].reshape(1, -1)
if labels is not None:
labels = labels.view(B * N)[text_masks].reshape(1, -1)
if position_ids is not None:
position_ids = position_ids.view(B * N)[text_masks]
pos_start = [0] + torch.nonzero(position_ids == 0)[:, 0].tolist()
pos_end = pos_start[1:] + [len(input_ids)]
position_ids = torch.cat([torch.arange(end - start, device=input_ids.device) for start, end in zip(pos_start, pos_end)])
position_ids = position_ids.reshape(1, -1)
image_selected = (input_ids == self.config.image_token_index)
audio_selected = (input_ids == MODAL_INDEX_MAP['<audio>'])
input_ids[image_selected] = 0
input_ids[audio_selected] = 0
input_embeds = self.get_model().embed_tokens(input_ids).clone()
input_embeds[image_selected] = input_embeds[image_selected] * 0.0 + mm_features.reshape(-1, C)
# replace region token
mask_selected = (input_ids == self.config.region_token_index)
try:
if mask_selected.sum()>0:
# try:
# patches = np.ascontiguousarray(additional_images_list[0][0])
# grid_h = additional_images_thw[0][0][0][1]
# grid_w = additional_images_thw[0][0][0][2]
# patches = patches.reshape(grid_h ,grid_w, 3, 14, 14)
# from matplotlib import pyplot as plt
# plt.imshow(patches[:,:,:,0,0])
# plt.savefig('7.png')
# import pdb
# pdb.set_trace()
# patches = patches.transpose(2, 0, 3, 1, 4)
# reconstructed_image = patches.reshape(3, grid_h*14, grid_w*14).transpose(1, 2, 0)
# from matplotlib import pyplot as plt
# plt.imshow(reconstructed_image)
# plt.savefig('7.png')
# import pdb
# pdb.set_trace()
additional_images_features = self.get_model().get_vision_encoder()(additional_images_list, grid_thws=additional_images_thw, strides=additional_images_strides)
reshaped_features = reshape_images_to_raw_grid(additional_images_features, additional_images_thw)
# mask_additional_image_features = []
# for idx in mask_ids:
# mask_additional_image_features.append(reshaped_features[idx])
mask_feats = self.model.region_encoder(reshaped_features, masks)
input_embeds[mask_selected] = input_embeds[mask_selected]*0.0 + mask_feats
# except: #FIXME
# print('additional_images_list is empty...')
except Exception as exp:
print('error: ', exp)
new_input_embeds = input_embeds.reshape(1, -1, C)
return None, attention_mask, past_key_values, new_input_embeds, labels, position_ids