Spaces:
Running
on
Zero
Running
on
Zero
feat: Enable MCP
#9
by
multimodalart
HF Staff
- opened
app.py
CHANGED
@@ -51,6 +51,22 @@ def add_contour(img, mask, color=(1., 1., 1.)):
|
|
51 |
|
52 |
@spaces.GPU(duration=120)
|
53 |
def generate_masks(image, mask_list, mask_raw_list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
image['image'] = image['background'].convert('RGB')
|
55 |
# del image['background'], image['composite']
|
56 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
@@ -77,6 +93,23 @@ def generate_masks(image, mask_list, mask_raw_list):
|
|
77 |
|
78 |
@spaces.GPU(duration=120)
|
79 |
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
image['image'] = image['background'].convert('RGB')
|
81 |
# del image['background'], image['composite']
|
82 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
@@ -104,6 +137,21 @@ def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
|
104 |
|
105 |
@spaces.GPU(duration=120)
|
106 |
def describe(image, mode, query, masks):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# Create an image object from the uploaded image
|
108 |
# print(image.keys())
|
109 |
|
@@ -194,6 +242,18 @@ def describe(image, mode, query, masks):
|
|
194 |
|
195 |
|
196 |
def load_first_frame(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
cap = cv2.VideoCapture(video_path)
|
198 |
ret, frame = cap.read()
|
199 |
cap.release()
|
@@ -205,6 +265,25 @@ def load_first_frame(video_path):
|
|
205 |
|
206 |
@spaces.GPU(duration=120)
|
207 |
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
# Create a temporary directory to save extracted video frames
|
209 |
cap = cv2.VideoCapture(video_path)
|
210 |
|
@@ -312,6 +391,18 @@ def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_vi
|
|
312 |
|
313 |
@spaces.GPU(duration=120)
|
314 |
def apply_sam(image, input_points):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)
|
316 |
|
317 |
with torch.no_grad():
|
@@ -328,6 +419,13 @@ def apply_sam(image, input_points):
|
|
328 |
|
329 |
|
330 |
def clear_masks():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
return [], [], []
|
332 |
|
333 |
|
@@ -459,6 +557,16 @@ if __name__ == "__main__":
|
|
459 |
|
460 |
|
461 |
def toggle_query_and_generate_button(mode):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
query_visible = mode == "QA"
|
463 |
caption_visible = mode == "Caption"
|
464 |
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), gr.update(visible=caption_visible), [], "", [], [],[],[]
|
@@ -468,6 +576,16 @@ if __name__ == "__main__":
|
|
468 |
mode.change(toggle_query_and_generate_button, inputs=mode, outputs=[query, generate_mask_btn, clear_masks_btn, submit_btn1, mask_output, output_image, submit_btn, mask_output, description, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
|
469 |
|
470 |
def toggle_query_and_generate_button_video(mode):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
query_visible = mode == "QA"
|
472 |
caption_visible = mode == "Caption"
|
473 |
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), [], [], [], [], []
|
@@ -537,4 +655,4 @@ if __name__ == "__main__":
|
|
537 |
model, processor, tokenizer = model_init(args_cli.model_path)
|
538 |
|
539 |
|
540 |
-
demo.launch()
|
|
|
51 |
|
52 |
@spaces.GPU(duration=120)
|
53 |
def generate_masks(image, mask_list, mask_raw_list):
|
54 |
+
"""
|
55 |
+
Generates segmentation masks for selected regions in an image using SAM.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
image (dict): A dictionary containing image data, typically from a Gradio ImageEditor,
|
59 |
+
with 'background' (PIL Image) and 'layers' (list of PIL Image layers).
|
60 |
+
mask_list (list): A list to accumulate (mask_image, label) tuples for display in a gallery.
|
61 |
+
mask_raw_list (list): A list to accumulate raw NumPy mask arrays.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
tuple: A tuple containing:
|
65 |
+
- mask_list (list): Updated list of mask images for display.
|
66 |
+
- image (dict): Updated image dictionary with layers cleared.
|
67 |
+
- mask_list (list): Redundant return of mask_list (for Gradio update).
|
68 |
+
- mask_raw_list (list): Updated list of raw mask arrays.
|
69 |
+
"""
|
70 |
image['image'] = image['background'].convert('RGB')
|
71 |
# del image['background'], image['composite']
|
72 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
|
93 |
|
94 |
@spaces.GPU(duration=120)
|
95 |
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
96 |
+
"""
|
97 |
+
Generates segmentation masks for selected regions in the first frame of a video using SAM.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
image (dict): A dictionary containing image data (first frame of video),
|
101 |
+
typically from a Gradio ImageEditor, with 'background' (PIL Image)
|
102 |
+
and 'layers' (list of PIL Image layers).
|
103 |
+
mask_list_video (list): A list to accumulate (mask_image, label) tuples for display.
|
104 |
+
mask_raw_list_video (list): A list to accumulate raw NumPy mask arrays for video processing.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
tuple: A tuple containing:
|
108 |
+
- mask_list_video (list): Updated list of mask images for display.
|
109 |
+
- image (dict): Updated image dictionary with layers cleared.
|
110 |
+
- mask_list_video (list): Redundant return of mask_list_video (for Gradio update).
|
111 |
+
- mask_raw_list_video (list): Updated list of raw mask arrays.
|
112 |
+
"""
|
113 |
image['image'] = image['background'].convert('RGB')
|
114 |
# del image['background'], image['composite']
|
115 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
|
137 |
|
138 |
@spaces.GPU(duration=120)
|
139 |
def describe(image, mode, query, masks):
|
140 |
+
"""
|
141 |
+
Describes an image based on selected regions or answers a question about them.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
image (dict): A dictionary containing image data, typically from a Gradio ImageEditor,
|
145 |
+
with 'background' (PIL Image) and 'layers' (list of PIL Image layers).
|
146 |
+
mode (str): The operational mode, either "Caption" (to describe a selected region)
|
147 |
+
or "QA" (to answer a question about one or more regions).
|
148 |
+
query (str): The question to ask in "QA" mode. Ignored in "Caption" mode.
|
149 |
+
masks (list): A list of raw NumPy mask arrays representing previously generated masks.
|
150 |
+
|
151 |
+
Yields:
|
152 |
+
tuple: An image with contours and the generated text description/answer,
|
153 |
+
or updates for Gradio components during streaming.
|
154 |
+
"""
|
155 |
# Create an image object from the uploaded image
|
156 |
# print(image.keys())
|
157 |
|
|
|
242 |
|
243 |
|
244 |
def load_first_frame(video_path):
|
245 |
+
"""
|
246 |
+
Loads the first frame of a given video file.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
video_path (str): The file path to the video.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
PIL.Image.Image: The first frame of the video as a PIL Image.
|
253 |
+
|
254 |
+
Raises:
|
255 |
+
gr.Error: If the video file cannot be read.
|
256 |
+
"""
|
257 |
cap = cv2.VideoCapture(video_path)
|
258 |
ret, frame = cap.read()
|
259 |
cap.release()
|
|
|
265 |
|
266 |
@spaces.GPU(duration=120)
|
267 |
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
|
268 |
+
"""
|
269 |
+
Describes a video based on selected regions in its first frame or answers a question about them.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
video_path (str): The file path to the video.
|
273 |
+
mode (str): The operational mode, either "Caption" (to describe a selected region)
|
274 |
+
or "QA" (to answer a question about one or more regions).
|
275 |
+
query (str): The question to ask in "QA" mode. Ignored in "Caption" mode.
|
276 |
+
annotated_frame (dict): A dictionary containing the first frame's image data
|
277 |
+
from a Gradio ImageEditor, with 'background' (PIL Image)
|
278 |
+
and 'layers' (list of PIL Image layers).
|
279 |
+
masks (list): A list of raw NumPy mask arrays representing previously generated masks
|
280 |
+
for objects in the video.
|
281 |
+
mask_list_video (list): A list to accumulate (mask_image, label) tuples for display.
|
282 |
+
|
283 |
+
Yields:
|
284 |
+
tuple: The annotated first frame, the generated text description/answer,
|
285 |
+
and updated mask lists for Gradio components during streaming.
|
286 |
+
"""
|
287 |
# Create a temporary directory to save extracted video frames
|
288 |
cap = cv2.VideoCapture(video_path)
|
289 |
|
|
|
391 |
|
392 |
@spaces.GPU(duration=120)
|
393 |
def apply_sam(image, input_points):
|
394 |
+
"""
|
395 |
+
Applies the Segment Anything Model (SAM) to an image based on input points
|
396 |
+
to generate a segmentation mask.
|
397 |
+
|
398 |
+
Args:
|
399 |
+
image (PIL.Image.Image): The input image.
|
400 |
+
input_points (list): A list of lists, where each inner list contains
|
401 |
+
[x, y] coordinates representing points used for segmentation.
|
402 |
+
|
403 |
+
Returns:
|
404 |
+
numpy.ndarray: The selected binary segmentation mask as a NumPy array (H, W).
|
405 |
+
"""
|
406 |
inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)
|
407 |
|
408 |
with torch.no_grad():
|
|
|
419 |
|
420 |
|
421 |
def clear_masks():
|
422 |
+
"""
|
423 |
+
Clears the stored lists of masks and raw masks.
|
424 |
+
|
425 |
+
Returns:
|
426 |
+
tuple: Three empty lists, intended to reset Gradio components
|
427 |
+
displaying masks.
|
428 |
+
"""
|
429 |
return [], [], []
|
430 |
|
431 |
|
|
|
557 |
|
558 |
|
559 |
def toggle_query_and_generate_button(mode):
|
560 |
+
"""
|
561 |
+
Toggles the visibility of query-related Gradio components based on the selected mode.
|
562 |
+
Also clears mask states.
|
563 |
+
|
564 |
+
Args:
|
565 |
+
mode (str): The selected mode ("Caption" or "QA").
|
566 |
+
|
567 |
+
Returns:
|
568 |
+
tuple: A series of gr.update() calls and empty lists to update Gradio components.
|
569 |
+
"""
|
570 |
query_visible = mode == "QA"
|
571 |
caption_visible = mode == "Caption"
|
572 |
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), gr.update(visible=caption_visible), [], "", [], [],[],[]
|
|
|
576 |
mode.change(toggle_query_and_generate_button, inputs=mode, outputs=[query, generate_mask_btn, clear_masks_btn, submit_btn1, mask_output, output_image, submit_btn, mask_output, description, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
|
577 |
|
578 |
def toggle_query_and_generate_button_video(mode):
|
579 |
+
"""
|
580 |
+
Toggles the visibility of query-related Gradio components for video mode
|
581 |
+
based on the selected mode. Also clears mask states.
|
582 |
+
|
583 |
+
Args:
|
584 |
+
mode (str): The selected mode ("Caption" or "QA").
|
585 |
+
|
586 |
+
Returns:
|
587 |
+
tuple: A series of gr.update() calls and empty lists to update Gradio components.
|
588 |
+
"""
|
589 |
query_visible = mode == "QA"
|
590 |
caption_visible = mode == "Caption"
|
591 |
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), [], [], [], [], []
|
|
|
655 |
model, processor, tokenizer = model_init(args_cli.model_path)
|
656 |
|
657 |
|
658 |
+
demo.launch(mcp_server=True)
|