Spaces:
Running
on
Zero
Running
on
Zero
feat: Enable MCP
#9
by
multimodalart
HF Staff
- opened
app.py
CHANGED
|
@@ -51,6 +51,22 @@ def add_contour(img, mask, color=(1., 1., 1.)):
|
|
| 51 |
|
| 52 |
@spaces.GPU(duration=120)
|
| 53 |
def generate_masks(image, mask_list, mask_raw_list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
image['image'] = image['background'].convert('RGB')
|
| 55 |
# del image['background'], image['composite']
|
| 56 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
@@ -77,6 +93,23 @@ def generate_masks(image, mask_list, mask_raw_list):
|
|
| 77 |
|
| 78 |
@spaces.GPU(duration=120)
|
| 79 |
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
image['image'] = image['background'].convert('RGB')
|
| 81 |
# del image['background'], image['composite']
|
| 82 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
@@ -104,6 +137,21 @@ def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
|
| 104 |
|
| 105 |
@spaces.GPU(duration=120)
|
| 106 |
def describe(image, mode, query, masks):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
# Create an image object from the uploaded image
|
| 108 |
# print(image.keys())
|
| 109 |
|
|
@@ -194,6 +242,18 @@ def describe(image, mode, query, masks):
|
|
| 194 |
|
| 195 |
|
| 196 |
def load_first_frame(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
cap = cv2.VideoCapture(video_path)
|
| 198 |
ret, frame = cap.read()
|
| 199 |
cap.release()
|
|
@@ -205,6 +265,25 @@ def load_first_frame(video_path):
|
|
| 205 |
|
| 206 |
@spaces.GPU(duration=120)
|
| 207 |
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
# Create a temporary directory to save extracted video frames
|
| 209 |
cap = cv2.VideoCapture(video_path)
|
| 210 |
|
|
@@ -312,6 +391,18 @@ def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_vi
|
|
| 312 |
|
| 313 |
@spaces.GPU(duration=120)
|
| 314 |
def apply_sam(image, input_points):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)
|
| 316 |
|
| 317 |
with torch.no_grad():
|
|
@@ -328,6 +419,13 @@ def apply_sam(image, input_points):
|
|
| 328 |
|
| 329 |
|
| 330 |
def clear_masks():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
return [], [], []
|
| 332 |
|
| 333 |
|
|
@@ -459,6 +557,16 @@ if __name__ == "__main__":
|
|
| 459 |
|
| 460 |
|
| 461 |
def toggle_query_and_generate_button(mode):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
query_visible = mode == "QA"
|
| 463 |
caption_visible = mode == "Caption"
|
| 464 |
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), gr.update(visible=caption_visible), [], "", [], [],[],[]
|
|
@@ -468,6 +576,16 @@ if __name__ == "__main__":
|
|
| 468 |
mode.change(toggle_query_and_generate_button, inputs=mode, outputs=[query, generate_mask_btn, clear_masks_btn, submit_btn1, mask_output, output_image, submit_btn, mask_output, description, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
|
| 469 |
|
| 470 |
def toggle_query_and_generate_button_video(mode):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
query_visible = mode == "QA"
|
| 472 |
caption_visible = mode == "Caption"
|
| 473 |
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), [], [], [], [], []
|
|
@@ -537,4 +655,4 @@ if __name__ == "__main__":
|
|
| 537 |
model, processor, tokenizer = model_init(args_cli.model_path)
|
| 538 |
|
| 539 |
|
| 540 |
-
demo.launch()
|
|
|
|
| 51 |
|
| 52 |
@spaces.GPU(duration=120)
|
| 53 |
def generate_masks(image, mask_list, mask_raw_list):
|
| 54 |
+
"""
|
| 55 |
+
Generates segmentation masks for selected regions in an image using SAM.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
image (dict): A dictionary containing image data, typically from a Gradio ImageEditor,
|
| 59 |
+
with 'background' (PIL Image) and 'layers' (list of PIL Image layers).
|
| 60 |
+
mask_list (list): A list to accumulate (mask_image, label) tuples for display in a gallery.
|
| 61 |
+
mask_raw_list (list): A list to accumulate raw NumPy mask arrays.
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
tuple: A tuple containing:
|
| 65 |
+
- mask_list (list): Updated list of mask images for display.
|
| 66 |
+
- image (dict): Updated image dictionary with layers cleared.
|
| 67 |
+
- mask_list (list): Redundant return of mask_list (for Gradio update).
|
| 68 |
+
- mask_raw_list (list): Updated list of raw mask arrays.
|
| 69 |
+
"""
|
| 70 |
image['image'] = image['background'].convert('RGB')
|
| 71 |
# del image['background'], image['composite']
|
| 72 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
|
|
| 93 |
|
| 94 |
@spaces.GPU(duration=120)
|
| 95 |
def generate_masks_video(image, mask_list_video, mask_raw_list_video):
|
| 96 |
+
"""
|
| 97 |
+
Generates segmentation masks for selected regions in the first frame of a video using SAM.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
image (dict): A dictionary containing image data (first frame of video),
|
| 101 |
+
typically from a Gradio ImageEditor, with 'background' (PIL Image)
|
| 102 |
+
and 'layers' (list of PIL Image layers).
|
| 103 |
+
mask_list_video (list): A list to accumulate (mask_image, label) tuples for display.
|
| 104 |
+
mask_raw_list_video (list): A list to accumulate raw NumPy mask arrays for video processing.
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
tuple: A tuple containing:
|
| 108 |
+
- mask_list_video (list): Updated list of mask images for display.
|
| 109 |
+
- image (dict): Updated image dictionary with layers cleared.
|
| 110 |
+
- mask_list_video (list): Redundant return of mask_list_video (for Gradio update).
|
| 111 |
+
- mask_raw_list_video (list): Updated list of raw mask arrays.
|
| 112 |
+
"""
|
| 113 |
image['image'] = image['background'].convert('RGB')
|
| 114 |
# del image['background'], image['composite']
|
| 115 |
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
|
|
|
|
| 137 |
|
| 138 |
@spaces.GPU(duration=120)
|
| 139 |
def describe(image, mode, query, masks):
|
| 140 |
+
"""
|
| 141 |
+
Describes an image based on selected regions or answers a question about them.
|
| 142 |
+
|
| 143 |
+
Args:
|
| 144 |
+
image (dict): A dictionary containing image data, typically from a Gradio ImageEditor,
|
| 145 |
+
with 'background' (PIL Image) and 'layers' (list of PIL Image layers).
|
| 146 |
+
mode (str): The operational mode, either "Caption" (to describe a selected region)
|
| 147 |
+
or "QA" (to answer a question about one or more regions).
|
| 148 |
+
query (str): The question to ask in "QA" mode. Ignored in "Caption" mode.
|
| 149 |
+
masks (list): A list of raw NumPy mask arrays representing previously generated masks.
|
| 150 |
+
|
| 151 |
+
Yields:
|
| 152 |
+
tuple: An image with contours and the generated text description/answer,
|
| 153 |
+
or updates for Gradio components during streaming.
|
| 154 |
+
"""
|
| 155 |
# Create an image object from the uploaded image
|
| 156 |
# print(image.keys())
|
| 157 |
|
|
|
|
| 242 |
|
| 243 |
|
| 244 |
def load_first_frame(video_path):
|
| 245 |
+
"""
|
| 246 |
+
Loads the first frame of a given video file.
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
video_path (str): The file path to the video.
|
| 250 |
+
|
| 251 |
+
Returns:
|
| 252 |
+
PIL.Image.Image: The first frame of the video as a PIL Image.
|
| 253 |
+
|
| 254 |
+
Raises:
|
| 255 |
+
gr.Error: If the video file cannot be read.
|
| 256 |
+
"""
|
| 257 |
cap = cv2.VideoCapture(video_path)
|
| 258 |
ret, frame = cap.read()
|
| 259 |
cap.release()
|
|
|
|
| 265 |
|
| 266 |
@spaces.GPU(duration=120)
|
| 267 |
def describe_video(video_path, mode, query, annotated_frame, masks, mask_list_video):
|
| 268 |
+
"""
|
| 269 |
+
Describes a video based on selected regions in its first frame or answers a question about them.
|
| 270 |
+
|
| 271 |
+
Args:
|
| 272 |
+
video_path (str): The file path to the video.
|
| 273 |
+
mode (str): The operational mode, either "Caption" (to describe a selected region)
|
| 274 |
+
or "QA" (to answer a question about one or more regions).
|
| 275 |
+
query (str): The question to ask in "QA" mode. Ignored in "Caption" mode.
|
| 276 |
+
annotated_frame (dict): A dictionary containing the first frame's image data
|
| 277 |
+
from a Gradio ImageEditor, with 'background' (PIL Image)
|
| 278 |
+
and 'layers' (list of PIL Image layers).
|
| 279 |
+
masks (list): A list of raw NumPy mask arrays representing previously generated masks
|
| 280 |
+
for objects in the video.
|
| 281 |
+
mask_list_video (list): A list to accumulate (mask_image, label) tuples for display.
|
| 282 |
+
|
| 283 |
+
Yields:
|
| 284 |
+
tuple: The annotated first frame, the generated text description/answer,
|
| 285 |
+
and updated mask lists for Gradio components during streaming.
|
| 286 |
+
"""
|
| 287 |
# Create a temporary directory to save extracted video frames
|
| 288 |
cap = cv2.VideoCapture(video_path)
|
| 289 |
|
|
|
|
| 391 |
|
| 392 |
@spaces.GPU(duration=120)
|
| 393 |
def apply_sam(image, input_points):
|
| 394 |
+
"""
|
| 395 |
+
Applies the Segment Anything Model (SAM) to an image based on input points
|
| 396 |
+
to generate a segmentation mask.
|
| 397 |
+
|
| 398 |
+
Args:
|
| 399 |
+
image (PIL.Image.Image): The input image.
|
| 400 |
+
input_points (list): A list of lists, where each inner list contains
|
| 401 |
+
[x, y] coordinates representing points used for segmentation.
|
| 402 |
+
|
| 403 |
+
Returns:
|
| 404 |
+
numpy.ndarray: The selected binary segmentation mask as a NumPy array (H, W).
|
| 405 |
+
"""
|
| 406 |
inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)
|
| 407 |
|
| 408 |
with torch.no_grad():
|
|
|
|
| 419 |
|
| 420 |
|
| 421 |
def clear_masks():
|
| 422 |
+
"""
|
| 423 |
+
Clears the stored lists of masks and raw masks.
|
| 424 |
+
|
| 425 |
+
Returns:
|
| 426 |
+
tuple: Three empty lists, intended to reset Gradio components
|
| 427 |
+
displaying masks.
|
| 428 |
+
"""
|
| 429 |
return [], [], []
|
| 430 |
|
| 431 |
|
|
|
|
| 557 |
|
| 558 |
|
| 559 |
def toggle_query_and_generate_button(mode):
|
| 560 |
+
"""
|
| 561 |
+
Toggles the visibility of query-related Gradio components based on the selected mode.
|
| 562 |
+
Also clears mask states.
|
| 563 |
+
|
| 564 |
+
Args:
|
| 565 |
+
mode (str): The selected mode ("Caption" or "QA").
|
| 566 |
+
|
| 567 |
+
Returns:
|
| 568 |
+
tuple: A series of gr.update() calls and empty lists to update Gradio components.
|
| 569 |
+
"""
|
| 570 |
query_visible = mode == "QA"
|
| 571 |
caption_visible = mode == "Caption"
|
| 572 |
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), gr.update(visible=caption_visible), [], "", [], [],[],[]
|
|
|
|
| 576 |
mode.change(toggle_query_and_generate_button, inputs=mode, outputs=[query, generate_mask_btn, clear_masks_btn, submit_btn1, mask_output, output_image, submit_btn, mask_output, description, mask_list, mask_raw_list, mask_list_video, mask_raw_list_video])
|
| 577 |
|
| 578 |
def toggle_query_and_generate_button_video(mode):
|
| 579 |
+
"""
|
| 580 |
+
Toggles the visibility of query-related Gradio components for video mode
|
| 581 |
+
based on the selected mode. Also clears mask states.
|
| 582 |
+
|
| 583 |
+
Args:
|
| 584 |
+
mode (str): The selected mode ("Caption" or "QA").
|
| 585 |
+
|
| 586 |
+
Returns:
|
| 587 |
+
tuple: A series of gr.update() calls and empty lists to update Gradio components.
|
| 588 |
+
"""
|
| 589 |
query_visible = mode == "QA"
|
| 590 |
caption_visible = mode == "Caption"
|
| 591 |
return gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=query_visible), gr.update(visible=caption_visible), [], [], [], [], []
|
|
|
|
| 655 |
model, processor, tokenizer = model_init(args_cli.model_path)
|
| 656 |
|
| 657 |
|
| 658 |
+
demo.launch(mcp_server=True)
|