Spaces:
Sleeping
Sleeping
Commit
·
b701a5b
1
Parent(s):
e263c34
fix13
Browse files
app.py
CHANGED
@@ -1,47 +1,32 @@
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
from pydantic import BaseModel
|
3 |
-
import time
|
4 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
import torch
|
6 |
import re
|
7 |
-
#fastapi
|
8 |
-
app = FastAPI()
|
9 |
|
10 |
-
|
11 |
-
# Tách câu theo dấu chấm, hỏi, chấm than, theo sau là khoảng trắng hoặc xuống dòng
|
12 |
-
sentence_endings = re.compile(r'(?<=[.!?])\s+')
|
13 |
-
return sentence_endings.split(text)
|
14 |
|
15 |
-
def
|
16 |
-
|
|
|
17 |
chunks = []
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
current_word_count += word_count
|
31 |
else:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
else:
|
37 |
-
if current_chunk:
|
38 |
-
chunks.append(' '.join(current_chunk))
|
39 |
-
current_chunk = [sentence]
|
40 |
-
current_word_count = word_count
|
41 |
-
|
42 |
-
if current_chunk:
|
43 |
-
chunks.append(' '.join(current_chunk))
|
44 |
-
|
45 |
return chunks
|
46 |
|
47 |
# Load model
|
@@ -80,31 +65,20 @@ class TranslateRequest(BaseModel):
|
|
80 |
@app.post("/translate")
|
81 |
def translate_text(req: TranslateRequest):
|
82 |
tokenizer.src_lang = req.source_lang
|
83 |
-
text_chunks =
|
84 |
-
|
85 |
translated_chunks = []
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
num_beams=1,
|
98 |
-
no_repeat_ngram_size=3,
|
99 |
-
)
|
100 |
-
total_gen_time += time.time() - start
|
101 |
-
|
102 |
-
translation = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
103 |
-
translated_chunks.append(translation)
|
104 |
-
print(f"Translated chunk: {translation}")
|
105 |
-
print("Total generating time:", total_gen_time)
|
106 |
full_translation = "\n".join(translated_chunks)
|
107 |
-
|
108 |
return {
|
109 |
"source_text": req.text,
|
110 |
"translated_text": full_translation,
|
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
from pydantic import BaseModel
|
|
|
3 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
4 |
import torch
|
5 |
import re
|
|
|
|
|
6 |
|
7 |
+
app = FastAPI()
|
|
|
|
|
|
|
8 |
|
9 |
+
def split_by_words_and_dot(text, min_words=125, max_words=160, fallback_words=150):
|
10 |
+
import re
|
11 |
+
words = re.findall(r'\S+|\n', text) # giữ nguyên \n như một "từ"
|
12 |
chunks = []
|
13 |
+
start = 0
|
14 |
+
while start < len(words):
|
15 |
+
end = min(start + max_words, len(words))
|
16 |
+
# Tìm dấu chấm trong khoảng min_words đến max_words
|
17 |
+
dot_idx = -1
|
18 |
+
for i in range(start + min_words, min(start + max_words, len(words))):
|
19 |
+
if words[i] == '.' or (words[i].endswith('.') and words[i] != '\n'):
|
20 |
+
dot_idx = i
|
21 |
+
if dot_idx != -1:
|
22 |
+
chunk_end = dot_idx + 1
|
23 |
+
elif end - start > fallback_words:
|
24 |
+
chunk_end = start + fallback_words
|
|
|
25 |
else:
|
26 |
+
chunk_end = end
|
27 |
+
chunk = ' '.join([w if w != '\n' else '\n' for w in words[start:chunk_end]]).replace(' \n ', '\n').replace(' \n', '\n').replace('\n ', '\n')
|
28 |
+
chunks.append(chunk.strip())
|
29 |
+
start = chunk_end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return chunks
|
31 |
|
32 |
# Load model
|
|
|
65 |
@app.post("/translate")
|
66 |
def translate_text(req: TranslateRequest):
|
67 |
tokenizer.src_lang = req.source_lang
|
68 |
+
text_chunks = split_by_words_and_dot(req.text, min_words=125, max_words=160, fallback_words=150)
|
|
|
69 |
translated_chunks = []
|
70 |
+
for chunk in text_chunks:
|
71 |
+
encoded = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=256).to(device)
|
72 |
+
generated_tokens = model.generate(
|
73 |
+
**encoded,
|
74 |
+
forced_bos_token_id=tokenizer.get_lang_id(req.target_lang),
|
75 |
+
max_length=256,
|
76 |
+
num_beams=2,
|
77 |
+
no_repeat_ngram_size=3,
|
78 |
+
)
|
79 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
80 |
+
translated_chunks.append(translated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
full_translation = "\n".join(translated_chunks)
|
|
|
82 |
return {
|
83 |
"source_text": req.text,
|
84 |
"translated_text": full_translation,
|