File size: 3,939 Bytes
99bbd30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os

import numpy as np
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
    Wav2Vec2Model,
    Wav2Vec2PreTrainedModel,
)


class RegressionHead(nn.Module):
    r"""Classification head."""

    def __init__(self, config):
        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class EmotionModel(Wav2Vec2PreTrainedModel):
    r"""Speech emotion classifier."""

    def __init__(self, config):
        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.classifier = RegressionHead(config)
        self.init_weights()

    def forward(

        self,

        input_values,

    ):
        outputs = self.wav2vec2(input_values)
        hidden_states = outputs[0]
        hidden_states = torch.mean(hidden_states, dim=1)
        logits = self.classifier(hidden_states)

        return hidden_states, logits


def process_func(

    x: np.ndarray,

    sampling_rate: int,

    embeddings: bool = False,

) -> np.ndarray:
    r"""Predict emotions or extract embeddings from raw audio signal."""

    # run through processor to normalize signal
    # always returns a batch, so we just get the first entry
    # then we put it on the device
    y = processor(x, sampling_rate=sampling_rate)
    y = y["input_values"][0]
    y = y.reshape(1, -1)
    y = torch.from_numpy(y).to(device)

    # run through model
    with torch.no_grad():
        y = model(y)[0 if embeddings else 1]

    # convert to numpy
    y = y.detach().cpu().numpy()

    return y


if __name__ == "__main__":
    from pathlib import Path

    import librosa
    from tqdm import tqdm

    import sys

    test_lst = sys.argv[1]
    output_path = sys.argv[2]


    device = "cpu"
    model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
    processor = Wav2Vec2Processor.from_pretrained(model_name)
    model = EmotionModel.from_pretrained(model_name).to(device)

    ecos = 0
    nums = 0

    not_found = 0

    with open(test_lst, "r") as fr:
        lines = fr.readlines()

    path = output_path

    for idx, line in enumerate(lines):
        gen_wav = path + "gen/" + str(idx).zfill(8) + ".wav"
        target = path + "tgt/" + str(idx).zfill(8) + ".wav"

        if Path(gen_wav).exists() and Path(target).exists():
            try:
                wav = librosa.load(gen_wav, sr=16000)[0]
            except Exception as e:
                print(f"Error in {gen_wav}, {e}")
                not_found += 1
                continue
            try:
                target = librosa.load(target, sr=16000)[0]
            except Exception as e:
                not_found += 1
                print(f"Error in {target}, {e}")
                continue

            with torch.inference_mode():
                gen_emo_embs = process_func(wav, 16000, embeddings=True)
                target_emo_embs = process_func(target, 16000, embeddings=True)

            emo_cos = np.sum(gen_emo_embs * target_emo_embs) / (
                np.linalg.norm(gen_emo_embs) * np.linalg.norm(target_emo_embs)
            )
            emo_acc = emo_cos * 100
        else:
            # raise FileNotFoundError(wav, target)
            not_found += 1
            continue

        _cos = emo_acc

        ecos += _cos
        nums += 1

    print(f"EMO_SIM: {ecos / nums:.3f}")