Spaces:
Build error
Build error
Add application file
Browse files
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
|
| 7 |
from mmgpt.models.builder import create_model_and_transforms
|
| 8 |
|
|
@@ -13,7 +14,9 @@ response_split = "### Response:"
|
|
| 13 |
class Inferencer:
|
| 14 |
|
| 15 |
def __init__(self, finetune_path, llama_path, open_flamingo_path):
|
|
|
|
| 16 |
ckpt = torch.load(finetune_path, map_location="cpu")
|
|
|
|
| 17 |
if "model_state_dict" in ckpt:
|
| 18 |
state_dict = ckpt["model_state_dict"]
|
| 19 |
# remove the "module." prefix
|
|
@@ -23,6 +26,7 @@ class Inferencer:
|
|
| 23 |
}
|
| 24 |
else:
|
| 25 |
state_dict = ckpt
|
|
|
|
| 26 |
tuning_config = ckpt.get("tuning_config")
|
| 27 |
if tuning_config is None:
|
| 28 |
print("tuning_config not found in checkpoint")
|
|
@@ -46,15 +50,19 @@ class Inferencer:
|
|
| 46 |
self.model = model
|
| 47 |
self.image_processor = image_processor
|
| 48 |
self.tokenizer = tokenizer
|
|
|
|
| 49 |
|
| 50 |
def __call__(self, prompt, imgpaths, max_new_token, num_beams, temperature,
|
| 51 |
top_k, top_p, do_sample):
|
|
|
|
| 52 |
if len(imgpaths) > 1:
|
| 53 |
raise gr.Error(
|
| 54 |
"Current only support one image, please clear gallery and upload one image"
|
| 55 |
)
|
| 56 |
lang_x = self.tokenizer([prompt], return_tensors="pt")
|
|
|
|
| 57 |
if len(imgpaths) == 0 or imgpaths is None:
|
|
|
|
| 58 |
for layer in self.model.lang_encoder._get_decoder_layers():
|
| 59 |
layer.condition_only_lang_x(True)
|
| 60 |
output_ids = self.model.lang_encoder.generate(
|
|
@@ -70,10 +78,16 @@ class Inferencer:
|
|
| 70 |
for layer in self.model.lang_encoder._get_decoder_layers():
|
| 71 |
layer.condition_only_lang_x(False)
|
| 72 |
else:
|
|
|
|
| 73 |
images = (Image.open(fp) for fp in imgpaths)
|
|
|
|
| 74 |
vision_x = [self.image_processor(im).unsqueeze(0) for im in images]
|
| 75 |
vision_x = torch.cat(vision_x, dim=0)
|
| 76 |
vision_x = vision_x.unsqueeze(1).unsqueeze(0).half()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
output_ids = self.model.generate(
|
| 79 |
vision_x=vision_x.cuda(),
|
|
@@ -86,12 +100,24 @@ class Inferencer:
|
|
| 86 |
top_p=top_p,
|
| 87 |
do_sample=do_sample,
|
| 88 |
)[0]
|
|
|
|
| 89 |
generated_text = self.tokenizer.decode(
|
| 90 |
output_ids, skip_special_tokens=True)
|
| 91 |
-
|
| 92 |
result = generated_text.split(response_split)[-1].strip()
|
|
|
|
| 93 |
return result
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
class PromptGenerator:
|
| 97 |
|
|
@@ -103,7 +129,7 @@ class PromptGenerator:
|
|
| 103 |
sep: str = "\n\n### ",
|
| 104 |
buffer_size=0,
|
| 105 |
):
|
| 106 |
-
self.all_history =
|
| 107 |
self.ai_prefix = ai_prefix
|
| 108 |
self.user_prefix = user_prefix
|
| 109 |
self.buffer_size = buffer_size
|
|
@@ -217,16 +243,23 @@ def bot(
|
|
| 217 |
state.sep = seperator
|
| 218 |
state.buffer_size = history_buffer
|
| 219 |
if image:
|
|
|
|
|
|
|
| 220 |
state.add_message(user_prefix, (text, image))
|
|
|
|
| 221 |
else:
|
| 222 |
state.add_message(user_prefix, text)
|
| 223 |
state.add_message(ai_prefix, None)
|
|
|
|
| 224 |
inputs = state.get_prompt()
|
|
|
|
| 225 |
image_paths = state.get_images()[-1:]
|
|
|
|
| 226 |
|
| 227 |
inference_results = inferencer(inputs, image_paths, max_new_token,
|
| 228 |
num_beams, temperature, top_k, top_p,
|
| 229 |
do_sample)
|
|
|
|
| 230 |
state.all_history[-1][-1] = inference_results
|
| 231 |
memory_allocated = str(round(torch.cuda.memory_allocated() / 1024**3,
|
| 232 |
2)) + 'GB'
|
|
@@ -284,14 +317,13 @@ def build_conversation_demo():
|
|
| 284 |
with gr.Column(scale=6):
|
| 285 |
with gr.Row():
|
| 286 |
with gr.Column():
|
| 287 |
-
chatbot = gr.Chatbot(elem_id="chatbot")
|
| 288 |
-
height=750)
|
| 289 |
with gr.Row():
|
| 290 |
with gr.Column(scale=8):
|
| 291 |
textbox = gr.Textbox(
|
| 292 |
show_label=False,
|
| 293 |
placeholder="Enter text and press ENTER",
|
| 294 |
-
|
| 295 |
submit_btn = gr.Button(value="Submit")
|
| 296 |
clear_btn = gr.Button(value="🗑️ Clear history")
|
| 297 |
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
|
@@ -354,7 +386,6 @@ def build_conversation_demo():
|
|
| 354 |
[state, chatbot, textbox, imagebox, model_inputs])
|
| 355 |
return demo
|
| 356 |
|
| 357 |
-
|
| 358 |
if __name__ == "__main__":
|
| 359 |
llama_path = "checkpoints/llama-7b_hf"
|
| 360 |
open_flamingo_path = "checkpoints/OpenFlamingo-9B/checkpoint.pt"
|
|
@@ -365,8 +396,11 @@ if __name__ == "__main__":
|
|
| 365 |
open_flamingo_path=open_flamingo_path,
|
| 366 |
finetune_path=finetune_path)
|
| 367 |
init_memory = str(round(torch.cuda.memory_allocated() / 1024**3, 2)) + 'GB'
|
|
|
|
|
|
|
|
|
|
| 368 |
demo = build_conversation_demo()
|
| 369 |
-
demo.queue(
|
| 370 |
IP = "0.0.0.0"
|
| 371 |
PORT = 8997
|
| 372 |
demo.launch(server_name=IP, server_port=PORT, share=True)
|
|
|
|
| 1 |
import os
|
| 2 |
+
import pickle
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
|
| 8 |
from mmgpt.models.builder import create_model_and_transforms
|
| 9 |
|
|
|
|
| 14 |
class Inferencer:
|
| 15 |
|
| 16 |
def __init__(self, finetune_path, llama_path, open_flamingo_path):
|
| 17 |
+
print("inferencer initialization begun")
|
| 18 |
ckpt = torch.load(finetune_path, map_location="cpu")
|
| 19 |
+
print("ckpt: ", ckpt)
|
| 20 |
if "model_state_dict" in ckpt:
|
| 21 |
state_dict = ckpt["model_state_dict"]
|
| 22 |
# remove the "module." prefix
|
|
|
|
| 26 |
}
|
| 27 |
else:
|
| 28 |
state_dict = ckpt
|
| 29 |
+
print("state_dict has been set")
|
| 30 |
tuning_config = ckpt.get("tuning_config")
|
| 31 |
if tuning_config is None:
|
| 32 |
print("tuning_config not found in checkpoint")
|
|
|
|
| 50 |
self.model = model
|
| 51 |
self.image_processor = image_processor
|
| 52 |
self.tokenizer = tokenizer
|
| 53 |
+
print("finished inferencer initialization")
|
| 54 |
|
| 55 |
def __call__(self, prompt, imgpaths, max_new_token, num_beams, temperature,
|
| 56 |
top_k, top_p, do_sample):
|
| 57 |
+
print("inferecer called")
|
| 58 |
if len(imgpaths) > 1:
|
| 59 |
raise gr.Error(
|
| 60 |
"Current only support one image, please clear gallery and upload one image"
|
| 61 |
)
|
| 62 |
lang_x = self.tokenizer([prompt], return_tensors="pt")
|
| 63 |
+
print("tokenized")
|
| 64 |
if len(imgpaths) == 0 or imgpaths is None:
|
| 65 |
+
print("imgpath len is 0 or None")
|
| 66 |
for layer in self.model.lang_encoder._get_decoder_layers():
|
| 67 |
layer.condition_only_lang_x(True)
|
| 68 |
output_ids = self.model.lang_encoder.generate(
|
|
|
|
| 78 |
for layer in self.model.lang_encoder._get_decoder_layers():
|
| 79 |
layer.condition_only_lang_x(False)
|
| 80 |
else:
|
| 81 |
+
print("imgpath is valid")
|
| 82 |
images = (Image.open(fp) for fp in imgpaths)
|
| 83 |
+
print("images retrieved")
|
| 84 |
vision_x = [self.image_processor(im).unsqueeze(0) for im in images]
|
| 85 |
vision_x = torch.cat(vision_x, dim=0)
|
| 86 |
vision_x = vision_x.unsqueeze(1).unsqueeze(0).half()
|
| 87 |
+
print("vision_x retrieved")
|
| 88 |
+
torch.cuda.empty_cache()
|
| 89 |
+
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
| 90 |
+
print(f"Available GPU memory: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
|
| 91 |
|
| 92 |
output_ids = self.model.generate(
|
| 93 |
vision_x=vision_x.cuda(),
|
|
|
|
| 100 |
top_p=top_p,
|
| 101 |
do_sample=do_sample,
|
| 102 |
)[0]
|
| 103 |
+
print("output_ids retrieved")
|
| 104 |
generated_text = self.tokenizer.decode(
|
| 105 |
output_ids, skip_special_tokens=True)
|
| 106 |
+
print("text generated:", generated_text)
|
| 107 |
result = generated_text.split(response_split)[-1].strip()
|
| 108 |
+
print("result: ", result)
|
| 109 |
return result
|
| 110 |
|
| 111 |
+
def save(self, file_path):
|
| 112 |
+
print("Saving model components...")
|
| 113 |
+
data = {
|
| 114 |
+
"model_state_dict": self.model.state_dict(),
|
| 115 |
+
"tokenizer": self.tokenizer,
|
| 116 |
+
"image_processor": self.image_processor,
|
| 117 |
+
}
|
| 118 |
+
with open(file_path, "wb") as f:
|
| 119 |
+
pickle.dump(data, f)
|
| 120 |
+
print(f"Model components saved to {file_path}")
|
| 121 |
|
| 122 |
class PromptGenerator:
|
| 123 |
|
|
|
|
| 129 |
sep: str = "\n\n### ",
|
| 130 |
buffer_size=0,
|
| 131 |
):
|
| 132 |
+
self.all_history = [("user", "Welcome to the chatbot!")]
|
| 133 |
self.ai_prefix = ai_prefix
|
| 134 |
self.user_prefix = user_prefix
|
| 135 |
self.buffer_size = buffer_size
|
|
|
|
| 243 |
state.sep = seperator
|
| 244 |
state.buffer_size = history_buffer
|
| 245 |
if image:
|
| 246 |
+
print(image)
|
| 247 |
+
print(text)
|
| 248 |
state.add_message(user_prefix, (text, image))
|
| 249 |
+
print("added message")
|
| 250 |
else:
|
| 251 |
state.add_message(user_prefix, text)
|
| 252 |
state.add_message(ai_prefix, None)
|
| 253 |
+
print("added ai_prefix message")
|
| 254 |
inputs = state.get_prompt()
|
| 255 |
+
print("retrived inputs")
|
| 256 |
image_paths = state.get_images()[-1:]
|
| 257 |
+
print("retrieved image_paths")
|
| 258 |
|
| 259 |
inference_results = inferencer(inputs, image_paths, max_new_token,
|
| 260 |
num_beams, temperature, top_k, top_p,
|
| 261 |
do_sample)
|
| 262 |
+
print(inference_results)
|
| 263 |
state.all_history[-1][-1] = inference_results
|
| 264 |
memory_allocated = str(round(torch.cuda.memory_allocated() / 1024**3,
|
| 265 |
2)) + 'GB'
|
|
|
|
| 317 |
with gr.Column(scale=6):
|
| 318 |
with gr.Row():
|
| 319 |
with gr.Column():
|
| 320 |
+
chatbot = gr.Chatbot(elem_id="chatbot", height=750)
|
|
|
|
| 321 |
with gr.Row():
|
| 322 |
with gr.Column(scale=8):
|
| 323 |
textbox = gr.Textbox(
|
| 324 |
show_label=False,
|
| 325 |
placeholder="Enter text and press ENTER",
|
| 326 |
+
container=False)
|
| 327 |
submit_btn = gr.Button(value="Submit")
|
| 328 |
clear_btn = gr.Button(value="🗑️ Clear history")
|
| 329 |
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
| 386 |
[state, chatbot, textbox, imagebox, model_inputs])
|
| 387 |
return demo
|
| 388 |
|
|
|
|
| 389 |
if __name__ == "__main__":
|
| 390 |
llama_path = "checkpoints/llama-7b_hf"
|
| 391 |
open_flamingo_path = "checkpoints/OpenFlamingo-9B/checkpoint.pt"
|
|
|
|
| 396 |
open_flamingo_path=open_flamingo_path,
|
| 397 |
finetune_path=finetune_path)
|
| 398 |
init_memory = str(round(torch.cuda.memory_allocated() / 1024**3, 2)) + 'GB'
|
| 399 |
+
|
| 400 |
+
inferencer.save("inferencer.pkl")
|
| 401 |
+
|
| 402 |
demo = build_conversation_demo()
|
| 403 |
+
demo.queue()
|
| 404 |
IP = "0.0.0.0"
|
| 405 |
PORT = 8997
|
| 406 |
demo.launch(server_name=IP, server_port=PORT, share=True)
|