marluwe's picture
Update app.py
0ae98eb verified
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import agents
from PIL import Image
from io import BytesIO
import whisper
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Load Agent ---
# 1. Instantiate Agent ( modify this part to create your agent)
agent = None
def select_agent(provider_name:str, model_name: str):
"""
Selects the agent based on the provided name.
:param agent_name: Name of the agent to select.
:return: The selected agent instance.
"""
global agent
try:
agent = agents.get_agent(model_name=model_name, model_type=provider_name)
if agent is None:
print(f"Agent not found for provider: {provider_name} and model: {model_name}")
agent = BasicAgent()
except Exception as e:
print(f"Error selecting agent: {e}")
agent = BasicAgent()
# Update ui to indicate the selected agent
print(f"Agent selected: {agent.model}")
agent_info_text.value = get_agent_info()
return agent
def get_agent_info() -> str:
global agent
if (agent is None):
return "No agent selected."
try:
# Get the agent's class name
agent_class_name = agent.__class__.__name__
# Get the agent's model name
model_name = agent.model
# Get the agent's docstring
docstring = inspect.getdoc(agent)
# Format the information
info = f"Agent Class: {agent_class_name}\nModel Name: {model_name}\nDocstring: {docstring}"
return info
except Exception as e:
print(f"Error getting agent info: {e}")
return "Error getting agent info."
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def get_all_questions():
"""
Fetches all available questions from the API.
"""
yield from run_test_on_questions(False, False)
def run_test_on_all_questions():
"""
Runs tests on all available questions by forwarding yields from run_test_on_questions.
"""
yield from run_test_on_questions(False, True)
def run_test_on_random_question():
"""
Runs a single test on a random available question by forwarding yields from run_test_on_questions.
"""
yield from run_test_on_questions(True, True)
def run_test_on_questions(use_random_question: bool, run_agent:bool):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
global agent
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/random-question" if use_random_question else f"{api_url}/questions"
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
info = "# started request"
yield info, None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_dataset_raw = response.json()
questions_dataset = [questions_dataset_raw] if use_random_question else questions_dataset_raw
yield info, None
if not questions_dataset:
print("Fetched questions list is empty.")
yield info +"\n\nFetched questions list is empty or invalid format.", None
return
print(f"Fetched {len(questions_dataset)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
yield f"Error fetching questions: {e}", None
return
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
yield f"Error decoding server response for questions: {e}", None
return
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
yield f"An unexpected error occurred fetching questions: {e}", None
return
# 3. Run your Agent
results_log = []
answers_payload = []
# loop over all questions
for i, questions_data in enumerate(questions_dataset):
agent.memory.reset()
images = []
task_id = questions_data.get("task_id")
question_text = questions_data.get("question")
file_name = questions_data.get("file_name")
if (file_name != "" and file_name is not None):
question_text = question_text + f"\n\nYou can download the correspondig file using the download tool with the task id: {task_id}."
fileData = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
# check if file is an image
if fileData.headers['Content-Type'] in ['image/png', 'image/jpeg']:
image = Image.open(BytesIO(fileData.content)).convert("RGB")
images = [image]
if fileData.headers['Content-Type'] in ['audio/mpeg', 'audio/wav']:
# Load the audio file using Whisper
model = whisper.load_model("base")
# MP3-Datei von der API abrufen
with open("temp_audio.mp3", "wb") as f:
f.write(fileData.content)
# Transkription durchführen
audioContent = model.transcribe("temp_audio.mp3")
question_text = question_text + f"\n\nTranscription: {audioContent['text']}"
info += f"\n\nRunning agent on question {i+1}/{len(questions_dataset)}:\n - task_id: {task_id}\n - question: {question_text}"
yield info, None
if not task_id or question_text is None:
yield info+ f"\nError in question data: {questions_data}", None
return
try:
submitted_answer = agent.run(question_text, images=images) if run_agent else "-- no agent interaction --"
info += f"\n - got answer {submitted_answer}"
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer, "FileInfo": file_name})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}", "FileInfo": file_name})
if not answers_payload:
print("Agent did not produce any answers.")
yield info + "\nAgent did not produce any answers.", pd.DataFrame(results_log)
return
# 5. Submit
try:
results_df = pd.DataFrame(results_log)
yield info + "\nGot an answer from agent", results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
yield status_message, results_df
return
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
return "We are not there yet", None
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def fetch_ollama_models() -> list:
"""
Fetches available models from the Ollama server.
:return: List of available models.
"""
try:
response = requests.get("http://localhost:11434/api/tags")
response.raise_for_status()
data = response.json()
return [model["name"] for model in data["models"]]
except requests.exceptions.RequestException as e:
print(f"Error fetching Ollama models: {e}")
return ["None"]
def fetch_lmstudio_models() -> list:
"""
Fetches available models from the LM Studio server.
:return: List of available models.
"""
try:
response = requests.get("http://localhost:1234/v1/models")
response.raise_for_status()
data = response.json()
return [model["id"] for model in data["data"]]
except requests.exceptions.RequestException as e:
print(f"Error fetching LM Studio models: {e}")
return ["None"]
available_models = ["None"]
def update_available_models(provider:str):
"""
Fetches available models based on the selected provider.
:param provider: The selected provider name.
:return: Update object for the model dropdown.
"""
global available_models
print(f"Selected provider: {provider}")
match provider:
case "hugging face":
available_models = ["None", "Qwen/Qwen2.5-Coder-32B-Instruct", "Qwen/Qwen2.5-Omni-7B"]
case "Ollama":
available_models = fetch_ollama_models()
case "LMStudio":
available_models = fetch_lmstudio_models()
case "Gemini":
available_models = ["None", "Gemini-2.0-flash-exp", "Gemini-2.0-flash-lite"]
case "Anthropic":
available_models = ["None", "claude-3"] # just for later options, model name possibly wrong
case "OpenAI":
available_models = ["None", "gpt-4o", "gpt-3.5-turbo"] # just for later options, model name possibly wrong
case "Basic Agent":
available_models = ["None"]
case _:
available_models = ["None"]
print(f"Available models for {provider}: {available_models}")
return gr.Dropdown(choices=available_models)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
agent_info_text = gr.Text(label="Agent Name", value=get_agent_info(), interactive=False, visible=True)
gr.Markdown(
"""
**Instructions:**
Select a provider and then model to generate the agent.
"""
)
provider_select = gr.Dropdown(
label="Select Provider",
choices=["Basic Agent", "LMStudio", "Ollama", "hugging face", "Gemini", "Anthropic", "OpenAI"],
interactive=True,
visible=True,
multiselect=False)
model_select = gr.Dropdown(
label="Select Model",
choices=available_models,
interactive=True,
visible=True,
multiselect=False)
# changing the provider will change the available models
provider_select.input(fn=update_available_models, inputs=provider_select, outputs=[model_select])
# changing a model will update the agent (see select_agent)
model_select.change(fn=select_agent, inputs=[provider_select, model_select])
# in case of running on HF space, we support the login button
# we somehow need to find out, if this is running on HF space or not
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
run_test_button = gr.Button("Run Test on Random Question")
run_multiple_tests_button = gr.Button("Run tests on all questions")
run_get_questions_button = gr.Button("Get Questions")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_test_button.click(
fn=run_test_on_random_question,
outputs=[status_output, results_table]
)
run_multiple_tests_button.click(
fn=run_test_on_all_questions,
outputs=[status_output, results_table]
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
run_get_questions_button.click(
fn=get_all_questions,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)