Swahili_vqa_app / app.py
mbwanaf's picture
update app.py
38bc9e9 verified
raw
history blame
5.19 kB
import os
# βœ… Use /tmp for all cache & runtime folders (Hugging Face safe)
os.environ["STREAMLIT_HOME"] = "/tmp"
os.environ["STREAMLIT_RUNTIME_METRICS_ENABLED"] = "false"
os.environ["STREAMLIT_WATCHED_MODULES"] = ""
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
os.environ["HF_HOME"] = "/tmp/huggingface"
import streamlit as st
import torch
import joblib
import numpy as np
import random
from PIL import Image
from transformers import AutoTokenizer, AutoModel, ViTModel, ViTImageProcessor
# Use CPU only
device = torch.device("cpu")
# === Define Swahili VQA Model ===
class SwahiliVQAModel(torch.nn.Module):
def __init__(self, num_answers):
super().__init__()
self.vision_encoder = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
self.text_encoder = AutoModel.from_pretrained("benjamin/roberta-base-wechsel-swahili")
self.fusion = torch.nn.Sequential(
torch.nn.Linear(768 + 768, 512),
torch.nn.ReLU(),
torch.nn.Dropout(0.3),
torch.nn.LayerNorm(512)
)
self.classifier = torch.nn.Linear(512, num_answers)
def forward(self, image, input_ids, attention_mask):
vision_outputs = self.vision_encoder(pixel_values=image)
image_feats = vision_outputs.last_hidden_state[:, 0, :]
text_outputs = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask)
text_feats = text_outputs.last_hidden_state[:, 0, :]
combined = torch.cat([image_feats, text_feats], dim=1)
fused = self.fusion(combined)
return self.classifier(fused)
# === Load model and encoders ===
le = joblib.load("Vit_3895_label_encoder_best.pkl")
model = SwahiliVQAModel(num_answers=len(le.classes_)).to(device)
# Load full state dict (already trained classifier)
state_dict = torch.load("Vit_3895_best_model_epoch25.pth", map_location=device)
model.load_state_dict(state_dict)
model.eval()
tokenizer = AutoTokenizer.from_pretrained("benjamin/roberta-base-wechsel-swahili")
vit_processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
# === Streamlit App ===
st.set_page_config(page_title="Swahili VQA", layout="wide")
st.title("🦜 Swahili Visual Question Answering (VQA)")
uploaded_image = st.file_uploader("πŸ“‚ Pakia picha hapa:", type=["jpg", "jpeg", "png"])
def generate_random_color():
return f"rgb({random.randint(150, 255)}, {random.randint(80, 200)}, {random.randint(80, 200)})"
col1, col2 = st.columns([1, 2], gap="large")
with col1:
if uploaded_image:
st.image(uploaded_image, caption="Picha Iliyopakiwa")
with col2:
st.markdown("<div style='padding-top: 15px;'>", unsafe_allow_html=True)
question = st.text_input("πŸ’¬ Andika swali lako hapa:")
submit_button = st.button("πŸ“© Tuma")
st.markdown("</div>", unsafe_allow_html=True)
if submit_button and uploaded_image and question:
with st.spinner("πŸ” Inachakata jibu..."):
image = Image.open(uploaded_image).convert("RGB")
image_tensor = vit_processor(images=image, return_tensors="pt")["pixel_values"]
inputs = tokenizer(question, max_length=128, padding="max_length", truncation=True, return_tensors="pt")
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
with torch.no_grad():
logits = model(image_tensor, input_ids, attention_mask)
probs = torch.softmax(logits, dim=1)
top_probs, top_indices = torch.topk(probs, 5)
decoded_answers = le.inverse_transform(top_indices.cpu().numpy()[0])
results = [
{"answer": ans, "confidence": round(prob * 100, 2)}
for ans, prob in zip(decoded_answers, top_probs[0].tolist())
]
results = sorted(results, key=lambda x: x["confidence"], reverse=True)
st.subheader("πŸ”Ž Majibu Yanayowezekana:")
max_confidence = max(result["confidence"] for result in results)
for i, pred in enumerate(results):
bar_width = (pred["confidence"] / max_confidence) * 70
color = generate_random_color()
st.markdown(
f"""
<div style="margin: 4px 0; padding: 2px 0; {'border-bottom: 1px solid rgba(150, 150, 150, 0.1);' if i < len(results)-1 else ''}">
<div style="font-size: 14px; font-weight: bold; margin-bottom: 2px;">
{pred['answer']}
</div>
<div style="display: flex; align-items: center; gap: 6px;">
<div style="width: {bar_width}%; height: 8px; border-radius: 3px; background: {color};"></div>
<div style="font-size: 13px; min-width: 45px;">
{pred['confidence']}%
</div>
</div>
</div>
""",
unsafe_allow_html=True
)
else:
st.info("πŸ“₯ Pakia picha na andika swali kisha bonyeza Tuma ili kupata jibu.")