nano-coder-free / prepare_code_dataset.py
mlopez6132's picture
Upload prepare_code_dataset.py with huggingface_hub
f59de10 verified
"""
Data preparation script for training nanoGPT on the flytech/python-codes-25k dataset.
This script downloads the dataset, tokenizes it, and creates the binary files needed for training.
"""
import os
import pickle
import numpy as np
from datasets import load_dataset
from tqdm import tqdm
def download_and_prepare_code_dataset():
"""Download and prepare the flytech/python-codes-25k dataset for nanoGPT training."""
print("Loading flytech/python-codes-25k dataset...")
dataset = load_dataset("flytech/python-codes-25k")
print(f"Dataset structure: {dataset}")
print(f"Available splits: {list(dataset.keys())}")
print(f"Train split size: {len(dataset['train'])}")
# Debug: Check the first few examples to understand the structure
print("\nFirst example structure:")
first_example = dataset['train'][0]
for key, value in first_example.items():
print(f" {key}: {repr(value[:200])}...") # Show first 200 chars
# Create data directory
data_dir = os.path.join('data', 'python-codes-25k')
os.makedirs(data_dir, exist_ok=True)
# Extract code content from the dataset
print("Extracting code content...")
train_texts = []
test_texts = []
# Process training data
for item in tqdm(dataset['train'], desc="Processing train split"):
# Try different possible field names for code content
code = item.get('text', '') or item.get('output', '') or item.get('code', '')
if code and isinstance(code, str) and len(code.strip()) > 0:
train_texts.append(code)
# Split training data into train and validation sets (90/10 split)
print("Splitting data into train and validation sets...")
total_samples = len(train_texts)
split_idx = int(0.9 * total_samples)
train_texts_final = train_texts[:split_idx]
test_texts = train_texts[split_idx:] # Use last 10% as validation
print(f"Final train samples: {len(train_texts_final)}")
print(f"Validation samples: {len(test_texts)}")
print(f"Extracted {len(train_texts)} total samples")
# Combine all texts for vocabulary building
all_text = '\n'.join(train_texts_final + test_texts)
print(f"Total characters: {len(all_text):,}")
# Create vocabulary from the text
print("Creating vocabulary...")
chars = sorted(list(set(all_text)))
vocab_size = len(chars)
print(f"Vocabulary size: {vocab_size}")
# Create character to integer mapping
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
# Save vocabulary metadata
meta = {
'vocab_size': vocab_size,
'itos': itos,
'stoi': stoi,
}
with open(os.path.join(data_dir, 'meta.pkl'), 'wb') as f:
pickle.dump(meta, f)
print(f"Saved vocabulary to {os.path.join(data_dir, 'meta.pkl')}")
# Tokenize and save training data
print("Tokenizing training data...")
train_ids = []
for text in tqdm(train_texts_final, desc="Tokenizing train"):
ids = [stoi[c] for c in text]
train_ids.extend(ids)
# Tokenize and save test data
print("Tokenizing test data...")
test_ids = []
for text in tqdm(test_texts, desc="Tokenizing test"):
ids = [stoi[c] for c in text]
test_ids.extend(ids)
# Save as binary files
train_ids = np.array(train_ids, dtype=np.uint16)
test_ids = np.array(test_ids, dtype=np.uint16)
train_path = os.path.join(data_dir, 'train.bin')
test_path = os.path.join(data_dir, 'val.bin') # nanoGPT expects 'val.bin'
train_ids.tofile(train_path)
test_ids.tofile(test_path)
print(f"Saved training data to {train_path} ({len(train_ids):,} tokens)")
print(f"Saved validation data to {test_path} ({len(test_ids):,} tokens)")
# Print some statistics
print(f"\nDataset statistics:")
print(f"Vocabulary size: {vocab_size}")
print(f"Training tokens: {len(train_ids):,}")
print(f"Validation tokens: {len(test_ids):,}")
print(f"Total tokens: {len(train_ids) + len(test_ids):,}")
# Show some example characters
print(f"\nFirst 100 characters in vocabulary:")
print(''.join(chars[:100]))
return data_dir
if __name__ == '__main__':
download_and_prepare_code_dataset()