Spaces:
Runtime error
Runtime error
# import | |
from tensorflow.python.keras.utils.generic_utils import default | |
import streamlit as st | |
from newspaper import Article | |
from transformers import pipeline | |
st.set_page_config(layout="wide", page_title="SummarizeLink") | |
# load the summarization model | |
def load_summarize_model(): | |
# model = pipeline("summarization", model='sshleifer/distilbart-cnn-12-6') | |
model = pipeline("summarization") | |
return model | |
summ = load_summarize_model() | |
# define functions | |
def download_and_parse_article(url): | |
article = Article(url) | |
article.download() | |
article.parse() | |
return article.text | |
# define the app | |
st.title("SummarizeLink") | |
st.text("Paste any article link below and click on the 'Summarize Text' button to get the summarized data") | |
# st.subheader("This application is using HuggingFace's transformers pre-trained model for text summarization.") | |
link = st.text_area('Paste your link here...', "https://towardsdatascience.com/a-guide-to-the-knowledge-graphs-bfb5c40272f1", height=50) | |
button = st.button("Summarize") | |
max_lengthy = st.sidebar.slider('Max summary length', min_value=30, max_value=700, value=100, step=10) | |
# num_beamer = st.sidebar.slider('Speed vs quality of Summary (1 is fastest but less accurate)', min_value=1, max_value=8, value=4, step=1) | |
with st.spinner("Summarizing..."): | |
if button and link: | |
text = download_and_parse_article(link) # get the text | |
summary = summ(text, | |
truncation=True, | |
max_length = max_lengthy, | |
min_length = 50, | |
num_beams=5, | |
do_sample=True, | |
early_stopping=True, | |
repetition_penalty=1.5, | |
length_penalty=1.5)[0] | |
st.write(summary['summary_text']) | |