Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,029 Bytes
bfa25fc 5c7c216 bfa25fc 8cf3ee6 46a0b0f 5c7c216 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f 38d4b91 46a0b0f bfa25fc 47a953f bfa25fc 46a0b0f bfa25fc 5c7c216 bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 4079598 bfa25fc 46a0b0f 8cf3ee6 46a0b0f 8cf3ee6 46a0b0f 8cf3ee6 46a0b0f 8cf3ee6 46a0b0f 8cf3ee6 46a0b0f 8cf3ee6 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 5c7c216 bfa25fc 5c7c216 bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 47a953f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 46a0b0f bfa25fc 47a953f bfa25fc 46a0b0f 4079598 bfa25fc 46a0b0f bfa25fc 5c7c216 bfa25fc 47a953f bfa25fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import argparse
import gradio as gr
import os
import spaces
import copy
import time
import json
import subprocess
import ast
import pdb
from transformers import TextIteratorStreamer
import threading
from kimi_dev.serve.frontend import reload_javascript
from kimi_dev.serve.utils import (
configure_logger,
)
from kimi_dev.serve.gradio_utils import (
reset_state,
reset_textbox,
transfer_input,
wrap_gen_fn,
)
from kimi_dev.serve.inference import load_model
from kimi_dev.serve.examples import get_examples
from kimi_dev.serve.templates import post_process,get_loc_prompt, clone_github_repo, build_repo_structure, show_project_structure,get_repair_prompt,get_repo_files,get_full_file_paths_and_classes_and_functions,correct_file_path_in_structure
TITLE = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with Kimi-Dev-72B🔥 </h1>"""
DESCRIPTION_TOP = """<a href="https://github.com/MoonshotAI/Kimi-Dev" target="_blank">Kimi-Dev-72B</a> is a strong and open-source coding LLM for software engineering tasks."""
USAGE_TOP = """Usage: 1. Input a Github url like "https://github.com/astropy/astropy" and submit it. \n2. Input your issue description and chat with Kimi-Dev-72B!"""
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
DEPLOY_MODELS = dict()
logger = configure_logger()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="Kimi-Dev-72B")
parser.add_argument(
"--local-path",
type=str,
default="",
help="huggingface ckpt, optional",
)
parser.add_argument("--ip", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
return parser.parse_args()
def fetch_model(model_name: str):
global args, DEPLOY_MODELS
if args.local_path:
model_path = args.local_path
else:
model_path = f"moonshotai/{args.model}"
if model_name in DEPLOY_MODELS:
model_info = DEPLOY_MODELS[model_name]
print(f"{model_name} has been loaded.")
else:
print(f"{model_name} is loading...")
DEPLOY_MODELS[model_name] = load_model(model_path)
print(f"Load {model_name} successfully...")
model_info = DEPLOY_MODELS[model_name]
return model_info
def get_prompt(conversation) -> str:
"""
Get the prompt for the conversation.
"""
system_prompt = conversation.system_template.format(system_message=conversation.system_message)
return system_prompt
def highlight_thinking(msg: str) -> str:
msg = copy.deepcopy(msg)
if "◁think▷" in msg:
msg = msg.replace("◁think▷", "<b style='color:blue;'>🤔Thinking...</b>\n")
if "◁/think▷" in msg:
msg = msg.replace("◁/think▷", "\n<b style='color:purple;'>💡Summary</b>\n")
return msg
@wrap_gen_fn
@spaces.GPU(duration=180)
def predict(
text,
url,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
chunk_size: int = 512,
):
"""
Predict the response for the input text and url.
Args:
text (str): The input text.
url (str): The input url.
chatbot (list): The chatbot.
history (list): The history.
top_p (float): The top-p value.
temperature (float): The temperature value.
repetition_penalty (float): The repetition penalty value.
max_length_tokens (int): The max length tokens.
chunk_size (int): The chunk size.
"""
print("running the prediction function")
try:
model, tokenizer = fetch_model(args.model)
if text == "":
yield chatbot, history, "Empty context."
return
except KeyError:
yield [[text, "No Model Found"]], [], "No Model Found"
return
prompt = text
repo_name = url.split("/")[-1]
repo_path = './local_path/'+repo_name # Local clone path
clone_github_repo(url, repo_path)
structure = build_repo_structure(repo_path)
string_struture = show_project_structure(structure)
loc_prompt = get_loc_prompt(prompt,string_struture)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": loc_prompt}
]
text_for_model = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text_for_model], return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# print("start generating")
if temperature > 0:
generation_kwargs = dict(
**model_inputs,
do_sample=True,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_length_tokens,
streamer=streamer
)
else:
generation_kwargs = dict(
**model_inputs,
do_sample=False,
max_new_tokens=max_length_tokens,
streamer=streamer
)
gen_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
gen_thread.start()
partial_output = "Start Locating...\n"
for new_text in streamer:
partial_output += new_text
highlight_response = highlight_thinking(partial_output)
yield [[prompt, highlight_response]], [["null test", "null test2"]], "Generating file locations..."
gen_thread.join()
response = partial_output
raw_answer=post_process(response)
model_found_files = raw_answer.strip().split("\n")
print(response)
highlight_response = highlight_thinking(response)
yield [[prompt,highlight_response]], [["null test","null test2"]], "Generate: Success"
# reading file content
contents = ""
for file_path in model_found_files:
file_name = file_path.replace("```","")
print(file_name)
# pdb.set_trace()
to_open_path = repo_path + "/" + file_name
print("to_open_path,",to_open_path)
with open(to_open_path, "r", encoding="utf-8") as f:
content = f.read()
contents += f"{file_name}\n{content}\n\n"
repair_prompt = get_repair_prompt(prompt,contents)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": repair_prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
subprocess.run(["rm", "-rf", repo_path], check=True)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
if temperature > 0:
generation_kwargs = dict(
**model_inputs,
do_sample=True,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_length_tokens,
streamer=streamer
)
else:
generation_kwargs = dict(
**model_inputs,
do_sample=False,
max_new_tokens=max_length_tokens,
streamer=streamer
)
gen_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
gen_thread.start()
partial_output_repair = "Start Repairing...\n"
yield [[prompt,highlight_response],[repair_prompt,partial_output_repair]], [["null test","null test2"]], "Generate: Success"
time.sleep(5)
for new_text in streamer:
partial_output_repair += new_text
highlight_response = highlight_thinking(partial_output)
highlight_response_repair = highlight_thinking(partial_output_repair)
yield [[prompt, highlight_response], [repair_prompt, highlight_response_repair]], [["null test", "null test2"]], "Generating repair suggestion..."
gen_thread.join()
# yield response, "null test", "Generate: Success"
yield [[prompt,highlight_response],[repair_prompt,highlight_response_repair]], [["null test","null test2"]], "Generate: Success"
def retry(
text,
url,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
chunk_size: int = 512,
):
"""
Retry the response for the input text and url.
"""
if len(history) == 0:
yield (chatbot, history, "Empty context")
return
# chatbot.pop()
# history.pop()
# text = history.pop()[-1]
if type(text) is tuple:
text, _ = text
yield from predict(
text,
url,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
chunk_size,
)
def build_demo(args: argparse.Namespace) -> gr.Blocks:
with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(1800, 1800)) as demo:
history = gr.State([])
input_text = gr.State()
upload_url = gr.State()
with gr.Row():
gr.HTML(TITLE)
status_display = gr.Markdown("Success", elem_id="status_display")
gr.Markdown(DESCRIPTION_TOP)
gr.Markdown(USAGE_TOP)
with gr.Row(equal_height=True):
with gr.Column(scale=4):
with gr.Row():
chatbot = gr.Chatbot(
elem_id="Kimi-Dev-72B",
show_share_button=True,
bubble_full_width=False,
height=400,
# render_markdown=False
)
with gr.Row():
with gr.Column(scale=4):
text_box = gr.Textbox(label="Issue Description", placeholder="Enter issue description", container=False)
with gr.Column(min_width=70):
submit_btn = gr.Button("Send")
# with gr.Column(min_width=70):
# cancel_btn = gr.Button("Stop")
with gr.Row():
empty_btn = gr.Button("🧹 New Conversation")
retry_btn = gr.Button("🔄 Regenerate")
# del_last_btn = gr.Button("🗑️ Remove Last Turn")
def respond(message):
return f"Url submitted!"
with gr.Column():
url_box = gr.Textbox(label="Please input a Github url here",placeholder="Input your url", lines=1)
url_submit_btn = gr.Button("Submit")
output = gr.Textbox(label="Submitted url")
url_submit_btn.click(fn=respond, inputs=upload_url, outputs=output)
# Parameter Setting Tab for control the generation parameters
with gr.Tab(label="Parameter Setting"):
top_p = gr.Slider(minimum=-0, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p")
temperature = gr.Slider(
minimum=0, maximum=1.0, value=1.0, step=0.1, interactive=True, label="Temperature"
)
max_length_tokens = gr.Slider(
minimum=512, maximum=16384, value=8192, step=64, interactive=True, label="Max Length Tokens"
)
gr.Examples(
examples=get_examples(ROOT_DIR),
inputs=[url_box, text_box],
)
# gr.Markdown()
input_widgets = [
input_text,
upload_url,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
]
output_widgets = [chatbot, history, status_display]
transfer_input_args = dict(
fn=transfer_input,
inputs=[text_box, url_box],
outputs=[input_text, upload_url, text_box, upload_url, submit_btn],
show_progress=True,
)
predict_args = dict(fn=predict, inputs=input_widgets, outputs=output_widgets, show_progress=True)
retry_args = dict(fn=retry, inputs=input_widgets, outputs=output_widgets, show_progress=True)
reset_args = dict(fn=reset_textbox, inputs=[], outputs=[text_box, status_display])
predict_events = [
text_box.submit(**transfer_input_args).then(**predict_args),
submit_btn.click(**transfer_input_args).then(**predict_args),
]
empty_btn.click(reset_state, outputs=output_widgets, show_progress=True)
empty_btn.click(**reset_args)
retry_btn.click(**retry_args)
demo.title = "Kimi-Dev-72B"
return demo
def main(args: argparse.Namespace):
demo = build_demo(args)
reload_javascript()
favicon_path = os.path.join("kimi_dev/serve/assets/favicon.ico")
# demo.queue().launch(
# favicon_path=favicon_path,
# server_name=args.ip,
# server_port=args.port,
# )
demo.queue().launch(
favicon_path=favicon_path,
server_name=args.ip,
server_port=args.port,
share=True
)
if __name__ == "__main__":
args = parse_args()
print(args)
main(args)
|