nakas's picture
Update app.py
d81cdbb verified
raw
history blame
10.5 kB
import gradio as gr
import requests
import folium
import os
import json
from datetime import datetime, timedelta
import pandas as pd
# Get API key from environment
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
def create_map(lat=40.7128, lon=-74.0060):
"""Create a Folium map centered at given coordinates"""
m = folium.Map(
location=[lat, lon],
zoom_start=10,
tiles="OpenStreetMap"
)
# Add a marker for the selected location
folium.Marker(
[lat, lon],
popup=f"Selected Location: {lat:.4f}, {lon:.4f}",
tooltip="Click to select this location",
icon=folium.Icon(color='red', icon='info-sign')
).add_to(m)
return m._repr_html_()
def get_pollen_data(lat, lon, days=5):
"""Fetch pollen data from Google Pollen API"""
if not GOOGLE_API_KEY:
return "Error: Google API key not found. Please set GOOGLE_API_KEY as a secret."
# Google Pollen API endpoint
url = "https://pollen.googleapis.com/v1/forecast:lookup"
# Calculate date range
start_date = datetime.now()
end_date = start_date + timedelta(days=days-1)
params = {
"key": GOOGLE_API_KEY,
"location.longitude": lon,
"location.latitude": lat,
"days": days,
"plantsDescription": True
}
try:
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
# Debug: Print the structure to understand the API response
print(f"API Response keys: {data.keys()}")
if "dailyInfo" in data and len(data["dailyInfo"]) > 0:
print(f"First day info keys: {data['dailyInfo'][0].keys()}")
print(f"Date structure: {data['dailyInfo'][0].get('date', 'No date field')}")
return data
except requests.exceptions.RequestException as e:
error_msg = f"Error fetching pollen data: {str(e)}"
if hasattr(e, 'response') and e.response is not None:
error_msg += f" (Status: {e.response.status_code})"
return error_msg
except json.JSONDecodeError as e:
return f"Error parsing response: {str(e)}"
except Exception as e:
return f"Unexpected error: {str(e)}"
def format_pollen_data(data):
"""Format pollen data for display"""
if isinstance(data, str): # Error message
return data, None
if "dailyInfo" not in data:
return "No pollen data available for this location.", None
# Create formatted output
output = []
output.append("# 🌸 Pollen Forecast Report\n")
# Location info if available
if "regionInfo" in data:
region = data["regionInfo"]
output.append(f"**Location:** {region.get('displayName', 'Unknown')}\n")
# Daily pollen data
daily_data = []
for day_info in data["dailyInfo"]:
# Handle different date formats from the API
date_info = day_info.get("date", {})
if isinstance(date_info, dict):
# If date is a dict, try to extract the date string
if "year" in date_info and "month" in date_info and "day" in date_info:
year = date_info["year"]
month = date_info["month"]
day = date_info["day"]
date_obj = datetime(year, month, day)
else:
# Fallback to today's date if we can't parse
date_obj = datetime.now()
elif isinstance(date_info, str):
# If it's already a string, parse it
try:
date_obj = datetime.strptime(date_info, "%Y-%m-%d")
except ValueError:
date_obj = datetime.now()
else:
# Fallback
date_obj = datetime.now()
formatted_date = date_obj.strftime("%B %d, %Y")
output.append(f"## πŸ“… {formatted_date}\n")
if "pollenTypeInfo" in day_info:
pollen_types = day_info["pollenTypeInfo"]
# Create a row for the dataframe
row_data = {"Date": formatted_date}
for pollen in pollen_types:
pollen_type = pollen["code"].replace("_", " ").title()
index_info = pollen.get("indexInfo", {})
index_value = index_info.get("value", "N/A")
category = index_info.get("category", "Unknown")
# Add color coding based on category
color_map = {
"VERY_LOW": "🟒",
"LOW": "🟑",
"MEDIUM": "🟠",
"HIGH": "πŸ”΄",
"VERY_HIGH": "🟣"
}
color = color_map.get(category, "βšͺ")
output.append(f"**{pollen_type}:** {color} {category} (Index: {index_value})")
row_data[pollen_type] = f"{category} ({index_value})"
# Add plant descriptions if available
if "plantDescription" in pollen:
plants = pollen["plantDescription"]
if "plants" in plants:
plant_list = [plant["displayName"] for plant in plants["plants"][:3]] # Show top 3
output.append(f" - *Main sources: {', '.join(plant_list)}*")
output.append("")
daily_data.append(row_data)
output.append("---\n")
# Create DataFrame for tabular view
df = None
if daily_data:
df = pd.DataFrame(daily_data)
# Add legend
output.append("\n## πŸ“Š Pollen Index Legend")
output.append("🟒 Very Low | 🟑 Low | 🟠 Medium | πŸ”΄ High | 🟣 Very High\n")
# Add tips
output.append("## πŸ’‘ Tips")
output.append("- Check pollen levels before outdoor activities")
output.append("- Take allergy medications during high pollen days")
output.append("- Keep windows closed during peak pollen times")
output.append("- Shower and change clothes after being outdoors")
return "\n".join(output), df
def update_location(lat, lon):
"""Update the map and fetch pollen data for new location"""
if lat is None or lon is None:
return create_map(), "Please select a location on the map.", None
# Create new map
new_map = create_map(lat, lon)
# Get pollen data
pollen_data = get_pollen_data(lat, lon)
formatted_data, df = format_pollen_data(pollen_data)
return new_map, formatted_data, df
# Create the Gradio interface
with gr.Blocks(title="🌸 Pollen Forecast Map", theme=gr.themes.Soft()) as app:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>🌸 Pollen Forecast Map</h1>
<p>Click on the map to select a location and get detailed pollen forecasts powered by Google Pollen API</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>πŸ“ Location Selection</h3>")
# Coordinate inputs
lat_input = gr.Number(
label="Latitude",
value=40.7128,
precision=6,
info="Enter latitude or click on map"
)
lon_input = gr.Number(
label="Longitude",
value=-74.0060,
precision=6,
info="Enter longitude or click on map"
)
update_btn = gr.Button("πŸ”„ Update Location", variant="primary")
# Preset locations
gr.HTML("<h4>πŸ“ Quick Locations</h4>")
with gr.Row():
nyc_btn = gr.Button("πŸ™οΈ NYC", size="sm")
la_btn = gr.Button("🌴 LA", size="sm")
chicago_btn = gr.Button("🌬️ Chicago", size="sm")
miami_btn = gr.Button("πŸ–οΈ Miami", size="sm")
with gr.Column(scale=2):
# Map display
map_html = gr.HTML(
value=create_map(),
label="Interactive Map"
)
with gr.Row():
with gr.Column():
# Pollen data output
pollen_output = gr.Markdown(
value="Select a location to view pollen forecast.",
label="Pollen Forecast"
)
# Data table
pollen_table = gr.Dataframe(
label="Pollen Data Summary",
visible=False
)
# Event handlers
def set_nyc():
return 40.7128, -74.0060
def set_la():
return 34.0522, -118.2437
def set_chicago():
return 41.8781, -87.6298
def set_miami():
return 25.7617, -80.1918
# Button events
update_btn.click(
fn=update_location,
inputs=[lat_input, lon_input],
outputs=[map_html, pollen_output, pollen_table]
)
nyc_btn.click(
fn=set_nyc,
outputs=[lat_input, lon_input]
).then(
fn=update_location,
inputs=[lat_input, lon_input],
outputs=[map_html, pollen_output, pollen_table]
)
la_btn.click(
fn=set_la,
outputs=[lat_input, lon_input]
).then(
fn=update_location,
inputs=[lat_input, lon_input],
outputs=[map_html, pollen_output, pollen_table]
)
chicago_btn.click(
fn=set_chicago,
outputs=[lat_input, lon_input]
).then(
fn=update_location,
inputs=[lat_input, lon_input],
outputs=[map_html, pollen_output, pollen_table]
)
miami_btn.click(
fn=set_miami,
outputs=[lat_input, lon_input]
).then(
fn=update_location,
inputs=[lat_input, lon_input],
outputs=[map_html, pollen_output, pollen_table]
)
# Auto-update when coordinates change
lat_input.change(
fn=update_location,
inputs=[lat_input, lon_input],
outputs=[map_html, pollen_output, pollen_table]
)
lon_input.change(
fn=update_location,
inputs=[lat_input, lon_input],
outputs=[map_html, pollen_output, pollen_table]
)
# Load initial data
app.load(
fn=update_location,
inputs=[lat_input, lon_input],
outputs=[map_html, pollen_output, pollen_table]
)
if __name__ == "__main__":
app.launch()