File size: 3,457 Bytes
693770d
 
 
 
 
2ff962a
693770d
2ff962a
 
 
 
 
693770d
2ff962a
 
 
 
 
 
 
693770d
2ff962a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693770d
2ff962a
693770d
2ff962a
 
693770d
2ff962a
693770d
 
2ff962a
693770d
 
 
2ff962a
693770d
 
 
 
 
 
 
2ff962a
 
693770d
2ff962a
 
 
 
693770d
2ff962a
693770d
 
fa05cd8
693770d
 
2ff962a
 
 
693770d
 
2ff962a
 
693770d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
from PIL import Image, ImageFilter
import numpy as np
import cv2
import torch
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation, DPTFeatureExtractor, DPTForDepthEstimation

# Load models
segformer_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512")
segformer_model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512")
dpt_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
dpt_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")

# Gaussian Blur Background Function
def gaussian_blur_background(image):
    # Preprocess image for segmentation
    inputs = segformer_extractor(images=image, return_tensors="pt")
    outputs = segformer_model(**inputs)
    logits = outputs.logits
    segmentation = torch.argmax(logits, dim=1)[0].numpy()

    # Create a binary mask for 'person' class (class index 12)
    human_mask = (segmentation == 12).astype(np.uint8) * 255
    human_mask_image = Image.fromarray(human_mask).resize(image.size)

    # Apply Gaussian blur to the entire image
    blurred_background = image.filter(ImageFilter.GaussianBlur(15))

    # Composite the original image with blurred background using the mask
    composite_image = Image.composite(image, blurred_background, human_mask_image)
    return composite_image

# Depth-Based Lens Blur Function
def lens_blur(image):
    # Preprocess image for depth estimation
    inputs = dpt_extractor(images=image, return_tensors="pt")
    with torch.no_grad():
        outputs = dpt_model(**inputs)
        depth_map = outputs.predicted_depth.squeeze().cpu().numpy()

    # Normalize depth map to range [0, 15] and invert for blur intensity
    depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) * 15
    depth_map = 15 - depth_map
    depth_map_resized = cv2.resize(depth_map, (image.width, image.height))

    # Convert image to OpenCV format
    image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    blurred_image = np.zeros_like(image_cv, dtype=np.float32)

    # Apply variable blur based on depth
    for blur_radius in range(1, 16):
        blurred_layer = cv2.GaussianBlur(image_cv, (0, 0), sigmaX=blur_radius)
        mask = ((depth_map_resized >= (blur_radius - 1)) & (depth_map_resized < blur_radius)).astype(np.float32)
        mask = cv2.merge([mask] * 3)
        blurred_image += blurred_layer * mask

    blurred_image = np.clip(blurred_image, 0, 255).astype(np.uint8)
    blurred_image_pil = Image.fromarray(cv2.cvtColor(blurred_image, cv2.COLOR_BGR2RGB))
    return blurred_image_pil

# Gradio Interface
def process_image(image, effect):
    if effect == "Gaussian Blur Background":
        return gaussian_blur_background(image)
    elif effect == "Lens Blur":
        return lens_blur(image)

with gr.Blocks() as demo:
    gr.Markdown("# BokehBot: Gaussian and Lens Blur Effects")
    with gr.Row():
        with gr.Column():
            uploaded_image = gr.Image(type="pil", label="Upload an Image")
            effect = gr.Radio(["Gaussian Blur Background", "Lens Blur"], label="Choose Effect")
            process_button = gr.Button("Apply Effect")
        with gr.Column():
            output_image = gr.Image(type="pil", label="Processed Image")
    
    process_button.click(process_image, inputs=[uploaded_image, effect], outputs=output_image)

demo.launch()