Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from datasets import load_dataset | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.linear_model import LogisticRegression | |
| # Load the dataset and prepare the model (as you already did) | |
| dataset = load_dataset("nhull/tripadvisor-split-dataset") | |
| train_data = dataset['train'] | |
| val_data = dataset['validation'] | |
| test_data = dataset['test'] | |
| # Prepare data and labels | |
| X_train, y_train = train_data['review'], train_data['label'] | |
| X_val, y_val = val_data['review'], val_data['label'] | |
| X_test, y_test = test_data['review'], test_data['label'] | |
| # Vectorize the text using TF-IDF | |
| vectorizer = TfidfVectorizer(max_features=10000) | |
| X_train_vec = vectorizer.fit_transform(X_train) | |
| X_val_vec = vectorizer.transform(X_val) | |
| X_test_vec = vectorizer.transform(X_test) | |
| # Train the logistic regression model | |
| model = LogisticRegression(max_iter=1000) | |
| model.fit(X_train_vec, y_train) | |
| # Define the prediction function | |
| def predict_sentiment(text): | |
| text_vec = vectorizer.transform([text]) | |
| prediction = model.predict(text_vec)[0] | |
| return f"Predicted label: {prediction}" | |
| # Create the Gradio interface | |
| iface = gr.Interface(fn=predict_sentiment, | |
| inputs=gr.Textbox(label="Enter a review text", placeholder="Type your review here..."), | |
| outputs=gr.Textbox(label="Predicted label"), | |
| live=True) | |
| # Launch the interface | |
| iface.launch() | |