PriMaPs / modules /crf.py
Oliver Hahn
add demo
1dc26c7
raw
history blame contribute delete
1.75 kB
#
# Authors: Wouter Van Gansbeke & Simon Vandenhende
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
import sys
import os
import numpy as np
import pydensecrf.densecrf as dcrf
import pydensecrf.utils as utils
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as VF
sys.path.append(os.getcwd())
from modules.transforms import UnNormalize as unnorm
MAX_ITER = 10
POS_W = 3
POS_XY_STD = 1
Bi_W = 4
Bi_XY_STD = 67
Bi_RGB_STD = 3
BGR_MEAN = np.array([104.008, 116.669, 122.675])
def dense_crf(image_tensor: torch.FloatTensor, output_logits: torch.FloatTensor):
image = np.array(VF.to_pil_image(unnorm()(image_tensor)))[:, :, ::-1]
H, W = image.shape[:2]
image = np.ascontiguousarray(image)
output_logits = F.interpolate(output_logits.unsqueeze(0), size=(H, W), mode="bilinear",
align_corners=False).squeeze()
output_probs = F.softmax(output_logits, dim=0).cpu().numpy()
c = output_probs.shape[0]
h = output_probs.shape[1]
w = output_probs.shape[2]
U = utils.unary_from_softmax(output_probs)
U = np.ascontiguousarray(U)
d = dcrf.DenseCRF2D(w, h, c)
d.setUnaryEnergy(U)
d.addPairwiseGaussian(sxy=POS_XY_STD, compat=POS_W)
d.addPairwiseBilateral(sxy=Bi_XY_STD, srgb=Bi_RGB_STD, rgbim=image, compat=Bi_W)
Q = d.inference(MAX_ITER)
Q = np.array(Q).reshape((c, h, w))
return Q
def _apply_crf(tup):
return dense_crf(tup[0], tup[1])
def batched_crf(pool, img_tensor, prob_tensor):
outputs = pool.map(_apply_crf, zip(img_tensor.detach().cpu(), prob_tensor.detach().cpu()))
return torch.cat([torch.from_numpy(arr).unsqueeze(0) for arr in outputs], dim=0)