File size: 4,813 Bytes
30e24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb584a
30e24b7
3cb584a
30e24b7
 
3cb584a
 
30e24b7
3cb584a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e24b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb584a
 
30e24b7
 
 
 
 
 
 
 
 
 
 
 
 
3cb584a
30e24b7
 
 
 
 
 
 
 
3cb584a
30e24b7
 
 
 
 
 
 
 
3cb584a
30e24b7
 
 
 
 
 
3cb584a
30e24b7
 
3cb584a
30e24b7
 
 
 
 
 
 
 
 
3cb584a
30e24b7
 
 
 
 
 
 
 
 
3cb584a
30e24b7
 
 
 
 
 
 
3cb584a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import logging
import gradio as gr
import pandas as pd
import torch
from GoogleNews import GoogleNews
from transformers import pipeline

# Set up logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

SENTIMENT_ANALYSIS_MODEL = (
    "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")
logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
    "sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")

def fetch_articles(query, max_articles=30):
    try:
        logging.info(f"Fetching up to {max_articles} articles for query: '{query}'")
        googlenews = GoogleNews(lang="en")
        googlenews.search(query)
        
        # ์ฒซ ํŽ˜์ด์ง€ ๊ฒฐ๊ณผ ๊ฐ€์ ธ์˜ค๊ธฐ
        articles = googlenews.result()
        
        # ๋ชฉํ‘œ ๊ธฐ์‚ฌ ์ˆ˜์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ์ถ”๊ฐ€ ํŽ˜์ด์ง€ ๊ฐ€์ ธ์˜ค๊ธฐ
        page = 2
        while len(articles) < max_articles and page <= 10:  # ์ตœ๋Œ€ 10ํŽ˜์ด์ง€๊นŒ์ง€๋งŒ ์‹œ๋„
            logging.info(f"Fetched {len(articles)} articles so far. Getting page {page}...")
            googlenews.get_page(page)
            page_results = googlenews.result()
            
            # ์ƒˆ ๊ฒฐ๊ณผ๊ฐ€ ์—†์œผ๋ฉด ์ค‘๋‹จ
            if not page_results:
                logging.info(f"No more results found after page {page-1}")
                break
                
            articles.extend(page_results)
            page += 1
            
        # ์ตœ๋Œ€ ๊ธฐ์‚ฌ ์ˆ˜๋กœ ์ œํ•œ
        articles = articles[:max_articles]
        
        logging.info(f"Successfully fetched {len(articles)} articles")
        return articles
    except Exception as e:
        logging.error(
            f"Error while searching articles for query: '{query}'. Error: {e}"
        )
        raise gr.Error(
            f"Unable to search articles for query: '{query}'. Try again later...",
            duration=5,
        )

def analyze_article_sentiment(article):
    logging.info(f"Analyzing sentiment for article: {article['title']}")
    sentiment = sentiment_analyzer(article["desc"])[0]
    article["sentiment"] = sentiment
    return article

def analyze_asset_sentiment(asset_name):
    logging.info(f"Starting sentiment analysis for asset: {asset_name}")
    logging.info("Fetching up to 30 articles")
    articles = fetch_articles(asset_name, max_articles=30)
    logging.info("Analyzing sentiment of each article")
    analyzed_articles = [analyze_article_sentiment(article) for article in articles]
    logging.info("Sentiment analysis completed")
    return convert_to_dataframe(analyzed_articles)

def convert_to_dataframe(analyzed_articles):
    df = pd.DataFrame(analyzed_articles)
    df["Title"] = df.apply(
        lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
        axis=1,
    )
    df["Description"] = df["desc"]
    df["Date"] = df["date"]
    
    def sentiment_badge(sentiment):
        colors = {
            "negative": "red",
            "neutral": "gray",
            "positive": "green",
        }
        color = colors.get(sentiment, "grey")
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
    
    df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
    return df[["Sentiment", "Title", "Description", "Date"]]

with gr.Blocks() as iface:
    gr.Markdown("# Trading Asset Sentiment Analysis")
    gr.Markdown(
        "Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
    )
    
    with gr.Row():
        input_asset = gr.Textbox(
            label="Asset Name",
            lines=1,
            placeholder="Enter the name of the trading asset...",
        )
    
    with gr.Row():
        analyze_button = gr.Button("Analyze Sentiment", size="sm")
    
    gr.Examples(
        examples=[
            "Bitcoin",
            "Tesla",
            "Apple",
            "Amazon",
        ],
        inputs=input_asset,
    )
    
    with gr.Row():
        with gr.Column():
            with gr.Blocks():
                gr.Markdown("## Articles and Sentiment Analysis")
                articles_output = gr.Dataframe(
                    headers=["Sentiment", "Title", "Description", "Date"],
                    datatype=["markdown", "html", "markdown", "markdown"],
                    wrap=False,
                )
    
    analyze_button.click(
        analyze_asset_sentiment,
        inputs=[input_asset],
        outputs=[articles_output],
    )

logging.info("Launching Gradio interface")
iface.queue().launch()