p50038325
energy-score
7321625
import glob
import json
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
energy_score: str = "NA" # energy consumption in kWh, "NA" if not available
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config_general")
# Handle case where config_general is None
if config is None:
# Set default values
precision = Precision.Unknown
org_and_model = data.get("model_name", "Unknown/Unknown")
if not isinstance(org_and_model, str):
org_and_model = "Unknown/Unknown"
revision = "main"
else:
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get revision
revision = config.get("model_sha", "")
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
if isinstance(org_and_model, str):
org_and_model = org_and_model.split("/", 1)
else:
org_and_model = ["Unknown", "Unknown"]
# Already handled above
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
# Use a safe default for model_sha if config is None
model_sha = "main"
if config is not None:
model_sha = config.get("model_sha", "main")
still_on_hub, _, model_config = is_model_on_hub(
full_model, model_sha, trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
# Check if results key exists in the data
if "results" not in data:
# If no results, set all benchmarks to None
for task in Tasks:
task = task.value
results[task.benchmark] = None
else:
# Process results normally
for task in Tasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
# Handle metrics that could be None in the JSON
metric_values = []
# Define the expected metric name and alternative names for each benchmark
expected_metric = task.metric
alternative_metrics = []
print(f"Processing benchmark: {task.benchmark}, expected metric: {expected_metric}")
# Set up alternative metric names based on the benchmark
if task.benchmark == "custom|folio:logical_reasoning|0":
if expected_metric != "folio_em":
alternative_metrics = ["folio_em"]
elif task.benchmark == "custom|telecom:qna|0":
if expected_metric != "telecom_qna_em":
alternative_metrics = ["telecom_qna_em"]
elif task.benchmark == "custom|3gpp:tsg|0":
if expected_metric != "em":
alternative_metrics = ["em"]
elif task.benchmark == "custom|math:problem_solving|0":
if expected_metric != "math_metric":
alternative_metrics = ["math_metric"]
elif task.benchmark == "custom|spider:text2sql|0":
if expected_metric != "sql_metric":
alternative_metrics = ["sql_metric"]
# Check for results with the benchmark name
for k, v in data["results"].items():
if task.benchmark == k:
# Try the expected metric name first
metric_value = v.get(expected_metric)
# If not found, try alternative metric names
if metric_value is None:
for alt_metric in alternative_metrics:
if alt_metric in v:
metric_value = v.get(alt_metric)
break
if metric_value is not None:
metric_values.append(metric_value)
print(f"Found metric value for {task.benchmark}: {metric_value}")
accs = np.array([v for v in metric_values if v is not None])
if len(accs) == 0:
# Also check the "all" section for metrics
if "all" in data["results"]:
all_results = data["results"]["all"]
print(f"Checking 'all' section for {task.benchmark}, available keys: {list(all_results.keys())}")
# Try the expected metric name first
metric_value = all_results.get(expected_metric)
# If not found, try alternative metric names
if metric_value is None:
for alt_metric in alternative_metrics:
if alt_metric in all_results:
metric_value = all_results.get(alt_metric)
print(f"Found alternative metric {alt_metric} in 'all' section")
break
if metric_value is not None:
accs = np.array([metric_value])
print(f"Found metric value in 'all' section for {task.benchmark}: {metric_value}")
else:
results[task.benchmark] = None
continue
else:
results[task.benchmark] = None
continue
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = mean_acc
print(f"Final result for {task.benchmark}: {mean_acc}")
# Extract energy score if available
energy_score = "NA"
if "energy_metrics" in data and data["energy_metrics"] is not None and data["energy_metrics"].get("enabled", False):
total_energy = data["energy_metrics"].get("total_energy", 0)
if total_energy > 0:
energy_score = f"{total_energy:.5f}"
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=revision,
still_on_hub=still_on_hub,
architecture=architecture,
energy_score=energy_score
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
self.architecture = request.get("architectures", "Unknown") # delete later
self.status = request.get("status", "FAILED")
except Exception:
self.status = "FAILED"
print(f'Could not find request file for {self.org}/{self.model} with "precision:{self.precision.value.name},model_type:{self.model_type}",license:{self.license},status:{self.status}')
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
available_metrics = [v for v in self.results.values() if v is not None]
average = sum(available_metrics) / len([v for v in available_metrics if v is not None]) if available_metrics else None
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.energy_score.name: self.energy_score,
}
print(f"\nConverting to dict for model: {self.full_model}")
for task in Tasks:
result = self.results.get(task.value.benchmark)
print(f" Task: {task.value.col_name}, Benchmark: {task.value.benchmark}, Result: {result}")
data_dict[task.value.col_name] = "NA" if result is None else round(result, 2)
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
try:
# Creation of result
print(f"\nProcessing file: {model_result_filepath}")
eval_result = EvalResult.init_from_json_file(model_result_filepath)
# Skip entries with Unknown/Unknown model name
if eval_result.full_model == "Unknown/Unknown":
print(f"Skipping invalid result file: {model_result_filepath}")
continue
print(f"Model: {eval_result.full_model}")
print(f"Results before update_with_request_file:")
for benchmark, value in eval_result.results.items():
print(f" {benchmark}: {value}")
eval_result.update_with_request_file(requests_path)
print(f"Results after update_with_request_file:")
for benchmark, value in eval_result.results.items():
print(f" {benchmark}: {value}")
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
print(f"Updating existing results for {eval_name}")
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
print(f"Adding new results for {eval_name}")
eval_results[eval_name] = eval_result
except Exception as e:
print(f"Error processing result file {model_result_filepath}: {str(e)}")
continue
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results