Spaces:
Building
Building
๐ Agentic Analysis & MCP/ACP Integration Guide
Overview
This guide explains how Model Context Protocol (MCP), Agent Context Protocol (ACP), and agentic capabilities significantly enhance your Dubsway Video AI system with advanced multi-modal analysis and beautiful formatting.
๐ฏ What MCP/ACP Brings to Your System
1. Multi-Modal Analysis
- Audio Analysis: Enhanced transcription with emotion detection and speaker identification
- Visual Analysis: Object detection, scene classification, OCR for text in frames
- Context Integration: Web search and Wikipedia lookups for deeper understanding
2. Agentic Capabilities
- Intelligent Reasoning: LLM-powered analysis that goes beyond basic transcription
- Tool Integration: Access to external knowledge sources and analysis tools
- Context-Aware Summarization: Understanding cultural references and technical details
3. Beautiful Formatting
- Comprehensive Reports: Rich, structured reports with visual elements
- Enhanced PDFs: Beautifully formatted PDFs with charts and insights
- Interactive Elements: Timestamped key moments and visual breakdowns
๐๏ธ Architecture Overview
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Dubsway Video AI โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ Basic Analysisโ โ Enhanced Analysisโ โ Agentic Toolsโ โ
โ โ (Whisper) โ โ (Multi-Modal) โ โ (MCP/ACP) โ โ
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ Audio Processingโ โ Visual Analysis โ โ Context โ โ
โ โ - Transcription โ โ - Object Detect โ โ - Web Search โ โ
โ โ - Emotion Detectโ โ - Scene Classifyโ โ - Wikipedia โ โ
โ โ - Speaker ID โ โ - OCR Text โ โ - Sentiment โ โ
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ Enhanced Vector โ โ Beautiful โ โ Comprehensiveโ โ
โ โ Store (FAISS) โ โ PDF Reports โ โ Analysis โ โ
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ง Key Components
1. MultiModalAnalyzer
class MultiModalAnalyzer:
- analyze_video_frames(): Extract and analyze video frames
- analyze_audio_enhanced(): Enhanced audio with emotion detection
- generate_enhanced_summary(): Agent-powered comprehensive summary
- create_beautiful_report(): Beautifully formatted reports
2. AgenticVideoProcessor
class AgenticVideoProcessor:
- process_video_agentic(): Main processing pipeline
- _perform_enhanced_analysis(): Multi-modal analysis
- _generate_comprehensive_report(): Rich report generation
- _store_enhanced_embeddings(): Enhanced vector storage
3. MCPToolManager
class MCPToolManager:
- web_search(): Real-time web search for context
- wikipedia_lookup(): Detailed information lookup
- sentiment_analysis(): Advanced sentiment analysis
- topic_extraction(): Intelligent topic modeling
๐ Enhanced Analysis Features
Audio Analysis
- โ Transcription: Accurate speech-to-text with confidence scores
- โ Language Detection: Automatic language identification
- โ Emotion Detection: Sentiment analysis of speech content
- โ Speaker Identification: Multi-speaker detection and separation
- โ Audio Quality Assessment: Background noise and clarity analysis
Visual Analysis
- โ Object Detection: Identify objects, people, and scenes
- โ Scene Classification: Categorize video content types
- โ OCR Text Recognition: Extract text from video frames
- โ Visual Sentiment: Analyze visual mood and atmosphere
- โ Key Frame Extraction: Identify important visual moments
Context Integration
- โ Web Search: Real-time information lookup
- โ Wikipedia Integration: Detailed topic explanations
- โ Cultural Context: Understanding references and context
- โ Technical Analysis: Domain-specific insights
- โ Trend Analysis: Current relevance and trends
๐จ Beautiful Report Formatting
Sample Enhanced Report Structure
# ๐น Video Analysis Report
## ๐ Overview
- Duration: 15:30 seconds
- Resolution: 1920x1080
- Language: English (95% confidence)
## ๐ต Audio Analysis
### Transcription Summary
Comprehensive transcription with emotion detection...
### Key Audio Segments
- **0:00 - 0:15**: Introduction with positive sentiment
- **0:15 - 0:45**: Main content with neutral tone
- **0:45 - 1:00**: Conclusion with enthusiastic delivery
## ๐ฌ Visual Analysis
### Scene Breakdown
- **0:00s**: Office setting with presenter
- **0:15s**: Screen sharing with technical diagrams
- **0:30s**: Audience interaction scene
### Key Visual Elements
- **Person**: appears 45 times (main presenter)
- **Computer**: appears 12 times (presentation device)
- **Chart**: appears 8 times (data visualization)
## ๐ฏ Key Insights
### Topics Covered
- Artificial Intelligence
- Machine Learning
- Business Applications
- Future Technology
### Sentiment Analysis
- **Positive**: 65%
- **Neutral**: 25%
- **Negative**: 10%
### Important Moments
- **0:30s**: Key insight about AI applications
- **1:15s**: Technical demonstration
- **2:00s**: Audience engagement peak
๐ Integration Steps
Step 1: Install Dependencies
pip install opencv-python pillow duckduckgo-search wikipedia-api easyocr
Step 2: Update Your Worker
# In worker/daemon.py, replace:
transcription, summary = await whisper_llm.analyze(video_url, user_id, db)
# With:
transcription, summary = await agentic_integration.analyze_with_agentic_capabilities(video_url, user_id, db)
Step 3: Enhanced PDF Generation
# The system automatically generates enhanced PDFs with:
- Beautiful formatting
- Visual charts and graphs
- Timestamped key moments
- Comprehensive insights
Step 4: Monitor Enhanced Vector Store
# Enhanced embeddings include:
- Multi-modal metadata
- Topic classifications
- Sentiment scores
- Context information
๐ฏ Benefits & Use Cases
Content Creators
- Deep Analysis: Understand audience engagement patterns
- Content Optimization: Identify what works best
- Trend Analysis: Stay current with relevant topics
Business Intelligence
- Meeting Analysis: Extract key insights from presentations
- Training Assessment: Evaluate training video effectiveness
- Market Research: Analyze competitor content
Educational Institutions
- Lecture Analysis: Comprehensive course content breakdown
- Student Engagement: Track learning patterns
- Content Quality: Assess educational material effectiveness
Research & Development
- Technical Documentation: Extract technical insights
- Patent Analysis: Understand innovation patterns
- Knowledge Management: Build comprehensive knowledge bases
๐ฎ Future Enhancements
Planned Features
- Real-time Analysis: Live video processing capabilities
- Custom Models: Domain-specific analysis models
- Interactive Reports: Web-based interactive analysis
- API Integration: Third-party tool integrations
- Advanced RAG: Enhanced retrieval-augmented generation
Advanced Capabilities
- Multi-language Support: Enhanced international content analysis
- Industry-specific Analysis: Specialized models for different domains
- Predictive Analytics: Content performance prediction
- Automated Insights: AI-generated recommendations
๐ Performance Considerations
Processing Time
- Basic Analysis: 1-2 minutes per video
- Enhanced Analysis: 3-5 minutes per video
- Agentic Analysis: 5-10 minutes per video
Resource Requirements
- GPU: Recommended for faster processing
- Memory: 8GB+ RAM for enhanced analysis
- Storage: Additional space for enhanced vector stores
Scalability
- Parallel Processing: Multiple videos can be processed simultaneously
- Caching: Intelligent caching of expensive analyses
- Fallback Mechanisms: Graceful degradation to basic analysis
๐ ๏ธ Troubleshooting
Common Issues
- Memory Errors: Reduce batch size or enable GPU processing
- Model Loading: Ensure all dependencies are installed
- API Limits: Configure rate limiting for external APIs
- File Formats: Ensure video files are in supported formats
Performance Optimization
- GPU Acceleration: Enable CUDA for faster processing
- Model Caching: Cache frequently used models
- Parallel Processing: Process multiple components simultaneously
- Resource Monitoring: Monitor system resources during processing
๐ Additional Resources
- LangChain Documentation: https://python.langchain.com/
- OpenAI API Guide: https://platform.openai.com/docs
- Hugging Face Models: https://huggingface.co/models
- FAISS Documentation: https://github.com/facebookresearch/faiss
This enhanced system transforms your Dubsway Video AI from a basic transcription tool into a comprehensive, intelligent video analysis platform with beautiful formatting and deep insights.