prithivMLmods's picture
update app
2241b5e verified
raw
history blame
13.1 kB
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO", # [transformer weights extracted from: Phr00t/Qwen-Image-Edit-Rapid-AIO]
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'
),
torch_dtype=dtype
).to(device)
pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime",
weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors",
adapter_name="anime")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="镜头转换.safetensors",
adapter_name="multiple-angles")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration",
weight_name="移除光影.safetensors",
adapter_name="light-restoration")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight",
weight_name="Qwen-Edit-Relight.safetensors",
adapter_name="relight")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multi-Angle-Lighting",
weight_name="多角度灯光-251116.safetensors",
adapter_name="multi-angle-lighting")
pipe.load_lora_weights("tlennon-ie/qwen-edit-skin",
weight_name="qwen-edit-skin_1.1_000002750.safetensors",
adapter_name="edit-skin")
pipe.load_lora_weights("lovis93/next-scene-qwen-image-lora-2509",
weight_name="next-scene_lora-v2-3000.safetensors",
adapter_name="next-scene")
pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA",
weight_name="qwen-edit-enhance_64-v3_000001000.safetensors",
adapter_name="upscale-image")
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
MAX_SEED = np.iinfo(np.int32).max
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
@spaces.GPU(duration=30)
def infer(
input_image,
prompt,
lora_adapter,
seed,
randomize_seed,
guidance_scale,
steps,
progress=gr.Progress(track_tqdm=True)
):
if input_image is None:
raise gr.Error("Please upload an image to edit.")
if lora_adapter == "Photo-to-Anime":
pipe.set_adapters(["anime"], adapter_weights=[1.0])
elif lora_adapter == "Multiple-Angles":
pipe.set_adapters(["multiple-angles"], adapter_weights=[1.0])
elif lora_adapter == "Light-Restoration":
pipe.set_adapters(["light-restoration"], adapter_weights=[1.0])
elif lora_adapter == "Relight":
pipe.set_adapters(["relight"], adapter_weights=[1.0])
elif lora_adapter == "Multi-Angle-Lighting":
pipe.set_adapters(["multi-angle-lighting"], adapter_weights=[1.0])
elif lora_adapter == "Edit-Skin":
pipe.set_adapters(["edit-skin"], adapter_weights=[1.0])
elif lora_adapter == "Next-Scene":
pipe.set_adapters(["next-scene"], adapter_weights=[1.0])
elif lora_adapter == "Upscale-Image":
pipe.set_adapters(["upscale-image"], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
original_image = input_image.convert("RGB")
# Use the new function to update dimensions
width, height = update_dimensions_on_upload(original_image)
result = pipe(
image=original_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=steps,
generator=generator,
true_cfg_scale=guidance_scale,
).images[0]
return result, seed
@spaces.GPU(duration=30)
def infer_example(input_image, prompt, lora_adapter):
input_pil = input_image.convert("RGB")
guidance_scale = 1.0
steps = 4
result, seed = infer(input_pil, prompt, lora_adapter, 0, True, guidance_scale, steps)
return result, seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast**", elem_id="main-title")
gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.")
with gr.Row(equal_height=True):
with gr.Column():
input_image = gr.Image(label="Upload Image", type="pil", height=290)
prompt = gr.Text(
label="Edit Prompt",
show_label=True,
placeholder="e.g., transform into anime..",
)
run_button = gr.Button("Edit Image", variant="primary")
with gr.Column():
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Choose Editing Style",
choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Multi-Angle-Lighting", "Upscale-Image", "Relight", "Next-Scene", "Edit-Skin"],
value="Photo-to-Anime"
)
with gr.Accordion("Advanced Settings", open=False, visible=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
gr.Examples(
examples=[
["examples/1.jpg", "Transform into anime.", "Photo-to-Anime"],
["examples/5.jpg", "Remove shadows and relight the image using soft lighting.", "Light-Restoration"],
["examples/4.jpg", "Use a subtle golden-hour filter with smooth light diffusion.", "Relight"],
["examples/2.jpeg", "Rotate the camera 45 degrees to the left.", "Multiple-Angles"],
["examples/7.jpg", "Light source from the Right Rear", "Multi-Angle-Lighting"],
["examples/10.jpeg", "Upscale the image.", "Upscale-Image"],
["examples/7.jpg", "Light source from the Below", "Multi-Angle-Lighting"],
["examples/2.jpeg", "Switch the camera to a top-down right corner view.", "Multiple-Angles"],
["examples/9.jpg", "The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth.", "Next-Scene"],
["examples/8.jpg", "Make the subjects skin details more prominent and natural.", "Edit-Skin"],
["examples/6.jpg", "Switch the camera to a bottom-up view.", "Multiple-Angles"],
["examples/6.jpg", "Rotate the camera 180 degrees upside down.", "Multiple-Angles"],
["examples/4.jpg", "Rotate the camera 45 degrees to the right.", "Multiple-Angles"],
["examples/4.jpg", "Switch the camera to a top-down view.", "Multiple-Angles"],
["examples/4.jpg", "Switch the camera to a wide-angle lens.", "Multiple-Angles"],
],
inputs=[input_image, prompt, lora_adapter],
outputs=[output_image, seed],
fn=infer_example,
cache_examples=False,
label="Examples"
)
run_button.click(
fn=infer,
inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
outputs=[output_image, seed]
)
demo.launch(mcp_server=True, ssr_mode=False, show_error=True)