Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| from PIL import Image | |
| from typing import Iterable | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| colors.steel_blue = colors.Color( | |
| name="steel_blue", | |
| c50="#EBF3F8", | |
| c100="#D3E5F0", | |
| c200="#A8CCE1", | |
| c300="#7DB3D2", | |
| c400="#529AC3", | |
| c500="#4682B4", | |
| c600="#3E72A0", | |
| c700="#36638C", | |
| c800="#2E5378", | |
| c900="#264364", | |
| c950="#1E3450", | |
| ) | |
| class SteelBlueTheme(Soft): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.gray, | |
| secondary_hue: colors.Color | str = colors.steel_blue, | |
| neutral_hue: colors.Color | str = colors.slate, | |
| text_size: sizes.Size | str = sizes.text_lg, | |
| font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
| ), | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| secondary_hue=secondary_hue, | |
| neutral_hue=neutral_hue, | |
| text_size=text_size, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| super().set( | |
| background_fill_primary="*primary_50", | |
| background_fill_primary_dark="*primary_900", | |
| body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
| body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
| button_primary_text_color="white", | |
| button_primary_text_color_hover="white", | |
| button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)", | |
| button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)", | |
| button_secondary_text_color="black", | |
| button_secondary_text_color_hover="white", | |
| button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", | |
| button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", | |
| button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", | |
| button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", | |
| slider_color="*secondary_500", | |
| slider_color_dark="*secondary_600", | |
| block_title_text_weight="600", | |
| block_border_width="3px", | |
| block_shadow="*shadow_drop_lg", | |
| button_primary_shadow="*shadow_drop_lg", | |
| button_large_padding="11px", | |
| color_accent_soft="*primary_100", | |
| block_label_background_fill="*primary_200", | |
| ) | |
| steel_blue_theme = SteelBlueTheme() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| transformer=QwenImageTransformer2DModel.from_pretrained( | |
| "linoyts/Qwen-Image-Edit-Rapid-AIO", # [transformer weights extracted from: Phr00t/Qwen-Image-Edit-Rapid-AIO] | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map='cuda' | |
| ), | |
| torch_dtype=dtype | |
| ).to(device) | |
| pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime", | |
| weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors", | |
| adapter_name="anime") | |
| pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles", | |
| weight_name="镜头转换.safetensors", | |
| adapter_name="multiple-angles") | |
| pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration", | |
| weight_name="移除光影.safetensors", | |
| adapter_name="light-restoration") | |
| pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight", | |
| weight_name="Qwen-Edit-Relight.safetensors", | |
| adapter_name="relight") | |
| pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multi-Angle-Lighting", | |
| weight_name="多角度灯光-251116.safetensors", | |
| adapter_name="multi-angle-lighting") | |
| pipe.load_lora_weights("tlennon-ie/qwen-edit-skin", | |
| weight_name="qwen-edit-skin_1.1_000002750.safetensors", | |
| adapter_name="edit-skin") | |
| pipe.load_lora_weights("lovis93/next-scene-qwen-image-lora-2509", | |
| weight_name="next-scene_lora-v2-3000.safetensors", | |
| adapter_name="next-scene") | |
| pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA", | |
| weight_name="qwen-edit-enhance_64-v3_000001000.safetensors", | |
| adapter_name="upscale-image") | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def update_dimensions_on_upload(image): | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| def infer( | |
| input_image, | |
| prompt, | |
| lora_adapter, | |
| seed, | |
| randomize_seed, | |
| guidance_scale, | |
| steps, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| if input_image is None: | |
| raise gr.Error("Please upload an image to edit.") | |
| if lora_adapter == "Photo-to-Anime": | |
| pipe.set_adapters(["anime"], adapter_weights=[1.0]) | |
| elif lora_adapter == "Multiple-Angles": | |
| pipe.set_adapters(["multiple-angles"], adapter_weights=[1.0]) | |
| elif lora_adapter == "Light-Restoration": | |
| pipe.set_adapters(["light-restoration"], adapter_weights=[1.0]) | |
| elif lora_adapter == "Relight": | |
| pipe.set_adapters(["relight"], adapter_weights=[1.0]) | |
| elif lora_adapter == "Multi-Angle-Lighting": | |
| pipe.set_adapters(["multi-angle-lighting"], adapter_weights=[1.0]) | |
| elif lora_adapter == "Edit-Skin": | |
| pipe.set_adapters(["edit-skin"], adapter_weights=[1.0]) | |
| elif lora_adapter == "Next-Scene": | |
| pipe.set_adapters(["next-scene"], adapter_weights=[1.0]) | |
| elif lora_adapter == "Upscale-Image": | |
| pipe.set_adapters(["upscale-image"], adapter_weights=[1.0]) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry" | |
| original_image = input_image.convert("RGB") | |
| # Use the new function to update dimensions | |
| width, height = update_dimensions_on_upload(original_image) | |
| result = pipe( | |
| image=original_image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=steps, | |
| generator=generator, | |
| true_cfg_scale=guidance_scale, | |
| ).images[0] | |
| return result, seed | |
| def infer_example(input_image, prompt, lora_adapter): | |
| input_pil = input_image.convert("RGB") | |
| guidance_scale = 1.0 | |
| steps = 4 | |
| result, seed = infer(input_pil, prompt, lora_adapter, 0, True, guidance_scale, steps) | |
| return result, seed | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 960px; | |
| } | |
| #main-title h1 {font-size: 2.1em !important;} | |
| """ | |
| with gr.Blocks(css=css, theme=steel_blue_theme) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast**", elem_id="main-title") | |
| gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.") | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Upload Image", type="pil", height=290) | |
| prompt = gr.Text( | |
| label="Edit Prompt", | |
| show_label=True, | |
| placeholder="e.g., transform into anime..", | |
| ) | |
| run_button = gr.Button("Edit Image", variant="primary") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350) | |
| with gr.Row(): | |
| lora_adapter = gr.Dropdown( | |
| label="Choose Editing Style", | |
| choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Multi-Angle-Lighting", "Upscale-Image", "Relight", "Next-Scene", "Edit-Skin"], | |
| value="Photo-to-Anime" | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False, visible=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4) | |
| gr.Examples( | |
| examples=[ | |
| ["examples/1.jpg", "Transform into anime.", "Photo-to-Anime"], | |
| ["examples/5.jpg", "Remove shadows and relight the image using soft lighting.", "Light-Restoration"], | |
| ["examples/4.jpg", "Use a subtle golden-hour filter with smooth light diffusion.", "Relight"], | |
| ["examples/2.jpeg", "Rotate the camera 45 degrees to the left.", "Multiple-Angles"], | |
| ["examples/7.jpg", "Light source from the Right Rear", "Multi-Angle-Lighting"], | |
| ["examples/10.jpeg", "Upscale the image.", "Upscale-Image"], | |
| ["examples/7.jpg", "Light source from the Below", "Multi-Angle-Lighting"], | |
| ["examples/2.jpeg", "Switch the camera to a top-down right corner view.", "Multiple-Angles"], | |
| ["examples/9.jpg", "The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth.", "Next-Scene"], | |
| ["examples/8.jpg", "Make the subjects skin details more prominent and natural.", "Edit-Skin"], | |
| ["examples/6.jpg", "Switch the camera to a bottom-up view.", "Multiple-Angles"], | |
| ["examples/6.jpg", "Rotate the camera 180 degrees upside down.", "Multiple-Angles"], | |
| ["examples/4.jpg", "Rotate the camera 45 degrees to the right.", "Multiple-Angles"], | |
| ["examples/4.jpg", "Switch the camera to a top-down view.", "Multiple-Angles"], | |
| ["examples/4.jpg", "Switch the camera to a wide-angle lens.", "Multiple-Angles"], | |
| ], | |
| inputs=[input_image, prompt, lora_adapter], | |
| outputs=[output_image, seed], | |
| fn=infer_example, | |
| cache_examples=False, | |
| label="Examples" | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], | |
| outputs=[output_image, seed] | |
| ) | |
| demo.launch(mcp_server=True, ssr_mode=False, show_error=True) |