Spaces:
Build error
Build error
spliting major tom europe in smaller countries
Browse files
app.py
CHANGED
|
@@ -1,62 +1,59 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
import os
|
| 4 |
-
import time
|
| 5 |
-
import psutil
|
| 6 |
-
from helper import (
|
| 7 |
load_dataset, search, get_file_paths,
|
| 8 |
get_cordinates, get_images_from_s3_to_display,
|
| 9 |
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
| 10 |
)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
# Load environment variables
|
| 16 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 17 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 18 |
|
| 19 |
# Predefined list of datasets
|
| 20 |
-
datasets = ["WayveScenes", "MajorTom-
|
| 21 |
description = {
|
| 22 |
-
"
|
| 23 |
-
"
|
| 24 |
-
"MajorTom-Europe": "A geospatial dataset containing satellite imagery from across Europe."
|
| 25 |
}
|
| 26 |
selection = {
|
| 27 |
'WayveScenes': [1, 8],
|
| 28 |
-
"MajorTom-
|
| 29 |
}
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
# AWS S3 bucket name
|
| 32 |
bucket_name = "datasets-quasara-io"
|
| 33 |
|
| 34 |
-
# Function to
|
| 35 |
-
def
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
# Streamlit App
|
| 41 |
def main():
|
| 42 |
# Initialize session state variables if not already initialized
|
| 43 |
if 'search_in_small_objects' not in st.session_state:
|
| 44 |
st.session_state.search_in_small_objects = False
|
|
|
|
| 45 |
if 'dataset_number' not in st.session_state:
|
| 46 |
st.session_state.dataset_number = 1
|
|
|
|
| 47 |
if 'df' not in st.session_state:
|
| 48 |
st.session_state.df = None
|
| 49 |
|
| 50 |
st.title("Semantic Search and Image Display")
|
| 51 |
-
log_resource_usage("Initialization")
|
| 52 |
|
| 53 |
# Select dataset from dropdown
|
| 54 |
dataset_name = st.selectbox("Select Dataset", datasets)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
folder_path = ""
|
| 58 |
-
else:
|
| 59 |
-
folder_path = f'{dataset_name}/'
|
| 60 |
|
| 61 |
st.caption(description[dataset_name])
|
| 62 |
|
|
@@ -64,13 +61,15 @@ def main():
|
|
| 64 |
st.session_state.search_in_small_objects = True
|
| 65 |
st.text("Small Object Search Enabled")
|
| 66 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
|
|
|
|
| 67 |
else:
|
| 68 |
st.session_state.search_in_small_objects = False
|
| 69 |
st.text("Small Object Search Disabled")
|
| 70 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
|
|
|
|
| 71 |
|
| 72 |
-
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=
|
| 73 |
-
st.text(f'The smaller the dataset
|
| 74 |
|
| 75 |
# Load dataset with limit only if not already loaded
|
| 76 |
if st.button("Load Dataset"):
|
|
@@ -78,25 +77,32 @@ def main():
|
|
| 78 |
loading_dataset_text = st.empty()
|
| 79 |
loading_dataset_text.text("Loading Dataset...")
|
| 80 |
loading_dataset_bar = st.progress(0)
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
# Simulate dataset loading progress
|
| 83 |
for i in range(0, 100, 25):
|
| 84 |
-
time.sleep(0.2)
|
| 85 |
loading_dataset_bar.progress(i + 25)
|
| 86 |
|
| 87 |
-
|
| 88 |
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
|
|
|
|
|
|
| 89 |
st.session_state.df = df
|
| 90 |
-
|
| 91 |
loading_dataset_bar.progress(100)
|
| 92 |
loading_dataset_text.text("Dataset loaded successfully!")
|
| 93 |
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
except Exception as e:
|
| 97 |
-
logging.error(f"Failed to load dataset: {e}")
|
| 98 |
st.error(f"Failed to load dataset: {e}")
|
| 99 |
-
|
|
|
|
| 100 |
# Input search query
|
| 101 |
query = st.text_input("Enter your search query")
|
| 102 |
|
|
@@ -110,23 +116,25 @@ def main():
|
|
| 110 |
st.warning("Please enter a search query.")
|
| 111 |
else:
|
| 112 |
try:
|
|
|
|
| 113 |
search_loading_text = st.empty()
|
| 114 |
search_loading_text.text("Searching...")
|
| 115 |
search_progress_bar = st.progress(0)
|
| 116 |
|
| 117 |
-
|
| 118 |
df = st.session_state.df
|
| 119 |
if st.session_state.search_in_small_objects:
|
| 120 |
results = search(query, df, limit)
|
| 121 |
top_k_paths = get_file_paths(df, results)
|
| 122 |
top_k_cordinates = get_cordinates(df, results)
|
| 123 |
else:
|
|
|
|
| 124 |
results = search(query, df, limit)
|
| 125 |
top_k_paths = get_file_paths(df, results)
|
| 126 |
|
|
|
|
| 127 |
search_progress_bar.progress(100)
|
| 128 |
search_loading_text.text("Search completed!")
|
| 129 |
-
log_resource_usage("After Search")
|
| 130 |
|
| 131 |
# Load Images with Bounding Boxes if applicable
|
| 132 |
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
|
|
@@ -134,11 +142,14 @@ def main():
|
|
| 134 |
elif not st.session_state.search_in_small_objects and top_k_paths:
|
| 135 |
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
|
| 136 |
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
|
|
|
| 137 |
else:
|
| 138 |
st.write("No results found.")
|
| 139 |
|
|
|
|
|
|
|
|
|
|
| 140 |
except Exception as e:
|
| 141 |
-
logging.error(f"Search failed: {e}")
|
| 142 |
st.error(f"Search failed: {e}")
|
| 143 |
|
| 144 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from helper3 import (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
load_dataset, search, get_file_paths,
|
| 4 |
get_cordinates, get_images_from_s3_to_display,
|
| 5 |
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
| 6 |
)
|
| 7 |
+
import os
|
| 8 |
+
import time
|
| 9 |
+
import psutil
|
| 10 |
+
from memory_profiler import memory_usage
|
| 11 |
|
| 12 |
# Load environment variables
|
| 13 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
| 14 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 15 |
|
| 16 |
# Predefined list of datasets
|
| 17 |
+
datasets = ["WayveScenes", "MajorTom-Germany"]
|
| 18 |
description = {
|
| 19 |
+
"WayveScenes": "A large-scale dataset featuring diverse urban driving scenes, captured from autonomous vehicles to advance AI perception and navigation in complex environments.",
|
| 20 |
+
"MajorTom-Germany": "A geospatial dataset containing satellite imagery from across Germany, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics."
|
|
|
|
| 21 |
}
|
| 22 |
selection = {
|
| 23 |
'WayveScenes': [1, 8],
|
| 24 |
+
"MajorTom-Germany": [1, 1]
|
| 25 |
}
|
| 26 |
+
folder_path_dict = {
|
| 27 |
+
"WayveScenes" : 'WayveScenes/',
|
| 28 |
+
"MajorTom-Germany": "MajorTom-Europe/"
|
| 29 |
+
}
|
| 30 |
# AWS S3 bucket name
|
| 31 |
bucket_name = "datasets-quasara-io"
|
| 32 |
|
| 33 |
+
# Function to display CPU and memory usage
|
| 34 |
+
def display_usage():
|
| 35 |
+
process = psutil.Process(os.getpid())
|
| 36 |
+
st.write(f"CPU usage: {process.cpu_percent()}%")
|
| 37 |
+
st.write(f"Memory usage: {process.memory_info().rss / (1024 ** 2)} MB")
|
| 38 |
|
| 39 |
# Streamlit App
|
| 40 |
def main():
|
| 41 |
# Initialize session state variables if not already initialized
|
| 42 |
if 'search_in_small_objects' not in st.session_state:
|
| 43 |
st.session_state.search_in_small_objects = False
|
| 44 |
+
|
| 45 |
if 'dataset_number' not in st.session_state:
|
| 46 |
st.session_state.dataset_number = 1
|
| 47 |
+
|
| 48 |
if 'df' not in st.session_state:
|
| 49 |
st.session_state.df = None
|
| 50 |
|
| 51 |
st.title("Semantic Search and Image Display")
|
|
|
|
| 52 |
|
| 53 |
# Select dataset from dropdown
|
| 54 |
dataset_name = st.selectbox("Select Dataset", datasets)
|
| 55 |
|
| 56 |
+
folder_path = folder_path_dict[dataset_name]
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
st.caption(description[dataset_name])
|
| 59 |
|
|
|
|
| 61 |
st.session_state.search_in_small_objects = True
|
| 62 |
st.text("Small Object Search Enabled")
|
| 63 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
|
| 64 |
+
st.text(f"You have selected Split Dataset {st.session_state.dataset_number}")
|
| 65 |
else:
|
| 66 |
st.session_state.search_in_small_objects = False
|
| 67 |
st.text("Small Object Search Disabled")
|
| 68 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
|
| 69 |
+
st.text(f"You have selected Main Dataset {st.session_state.dataset_number}")
|
| 70 |
|
| 71 |
+
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=30000, value=10000)
|
| 72 |
+
st.text(f'The smaller the dataset the faster the search will work.')
|
| 73 |
|
| 74 |
# Load dataset with limit only if not already loaded
|
| 75 |
if st.button("Load Dataset"):
|
|
|
|
| 77 |
loading_dataset_text = st.empty()
|
| 78 |
loading_dataset_text.text("Loading Dataset...")
|
| 79 |
loading_dataset_bar = st.progress(0)
|
| 80 |
+
|
| 81 |
+
# Memory profiling
|
| 82 |
+
mem_usage = memory_usage((load_dataset_with_limit, (dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects), {"limit": dataset_limit}))
|
| 83 |
+
st.write(f"Memory used for loading the dataset: {mem_usage[-1]:.2f} MB")
|
| 84 |
+
|
| 85 |
# Simulate dataset loading progress
|
| 86 |
for i in range(0, 100, 25):
|
| 87 |
+
time.sleep(0.2) # Simulate work being done
|
| 88 |
loading_dataset_bar.progress(i + 25)
|
| 89 |
|
| 90 |
+
# Load dataset and monitor CPU and memory
|
| 91 |
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
| 92 |
+
|
| 93 |
+
# Store loaded dataset in session state
|
| 94 |
st.session_state.df = df
|
|
|
|
| 95 |
loading_dataset_bar.progress(100)
|
| 96 |
loading_dataset_text.text("Dataset loaded successfully!")
|
| 97 |
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
| 98 |
+
|
| 99 |
+
# Display CPU and memory usage
|
| 100 |
+
display_usage()
|
| 101 |
+
|
| 102 |
except Exception as e:
|
|
|
|
| 103 |
st.error(f"Failed to load dataset: {e}")
|
| 104 |
+
|
| 105 |
+
|
| 106 |
# Input search query
|
| 107 |
query = st.text_input("Enter your search query")
|
| 108 |
|
|
|
|
| 116 |
st.warning("Please enter a search query.")
|
| 117 |
else:
|
| 118 |
try:
|
| 119 |
+
# Progress bar for search
|
| 120 |
search_loading_text = st.empty()
|
| 121 |
search_loading_text.text("Searching...")
|
| 122 |
search_progress_bar = st.progress(0)
|
| 123 |
|
| 124 |
+
# Perform search on the loaded dataset from session state
|
| 125 |
df = st.session_state.df
|
| 126 |
if st.session_state.search_in_small_objects:
|
| 127 |
results = search(query, df, limit)
|
| 128 |
top_k_paths = get_file_paths(df, results)
|
| 129 |
top_k_cordinates = get_cordinates(df, results)
|
| 130 |
else:
|
| 131 |
+
# Normal Search
|
| 132 |
results = search(query, df, limit)
|
| 133 |
top_k_paths = get_file_paths(df, results)
|
| 134 |
|
| 135 |
+
# Complete the search progress
|
| 136 |
search_progress_bar.progress(100)
|
| 137 |
search_loading_text.text("Search completed!")
|
|
|
|
| 138 |
|
| 139 |
# Load Images with Bounding Boxes if applicable
|
| 140 |
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
|
|
|
|
| 142 |
elif not st.session_state.search_in_small_objects and top_k_paths:
|
| 143 |
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
|
| 144 |
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
| 145 |
+
|
| 146 |
else:
|
| 147 |
st.write("No results found.")
|
| 148 |
|
| 149 |
+
# Display CPU and memory usage
|
| 150 |
+
display_usage()
|
| 151 |
+
|
| 152 |
except Exception as e:
|
|
|
|
| 153 |
st.error(f"Search failed: {e}")
|
| 154 |
|
| 155 |
if __name__ == "__main__":
|