Crisper-Whisper / app.py
rafaaa2105's picture
Update app.py
706ca1e verified
raw
history blame
25.4 kB
import gradio as gr
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import spaces
import numpy as np
from pydub import AudioSegment
import tempfile
import os
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
import re
# Model configuration - Using CrisperWhisper for TRUE verbatim transcription
# CrisperWhisper is designed to transcribe EVERY word including um, uh, fillers, stutters, false starts
MODEL_NAME = "nyrahealth/CrisperWhisper"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print(f"Loading {MODEL_NAME} for verbatim transcription...")
# Load model and processor
model = AutoModelForSpeechSeq2Seq.from_pretrained(
MODEL_NAME,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(MODEL_NAME)
# Create pipeline optimized for verbatim output
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=8, # Reduced batch size for stability
torch_dtype=torch_dtype,
device=device,
)
print("Model loaded successfully!")
def get_audio_duration(audio_path):
"""Get duration of audio file in seconds."""
try:
audio = AudioSegment.from_file(audio_path)
return len(audio) / 1000.0
except:
return None
def slice_audio(audio_path, chunk_duration=300):
"""
Slice audio into chunks of specified duration (in seconds).
Default is 5 minutes (300 seconds) per chunk.
"""
audio = AudioSegment.from_file(audio_path)
duration_ms = len(audio)
chunk_duration_ms = chunk_duration * 1000
chunks = []
for i in range(0, duration_ms, chunk_duration_ms):
chunk = audio[i:i + chunk_duration_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
chunk.export(temp_file.name, format="wav")
chunks.append(temp_file.name)
return chunks
@spaces.GPU
def transcribe_audio_chunk(audio_input, task="transcribe", language=None, return_timestamps=False):
"""
Transcribe a single audio chunk with CrisperWhisper.
This model is specifically trained for verbatim transcription.
"""
try:
generate_kwargs = {
"task": task,
}
if language:
generate_kwargs["language"] = language
# Only add timestamps if requested and handle the potential error
if return_timestamps:
try:
generate_kwargs["return_timestamps"] = "word"
result = pipe(audio_input, generate_kwargs=generate_kwargs)
return result
except RuntimeError as e:
if "size of tensor" in str(e):
# Fallback to chunk-level timestamps if word-level fails
print("Word-level timestamps failed, trying chunk-level...")
generate_kwargs["return_timestamps"] = True
result = pipe(audio_input, generate_kwargs=generate_kwargs)
return result
raise
else:
# No timestamps requested
result = pipe(audio_input, generate_kwargs=generate_kwargs)
return result
except Exception as e:
# Last resort fallback: try with minimal parameters
print(f"Error with generate_kwargs: {e}")
try:
result = pipe(audio_input)
return result
except Exception as e2:
raise Exception(f"Transcription failed: {str(e2)}")
def create_srt_file(transcription_data, output_path):
"""
Create an SRT subtitle file from transcription data.
"""
with open(output_path, 'w', encoding='utf-8') as f:
counter = 1
for item in transcription_data:
start_time = item['start']
end_time = item['end']
text = item['text'].strip()
if text: # Only add non-empty subtitles
# Convert seconds to SRT time format (HH:MM:SS,mmm)
start_srt = format_timestamp_srt(start_time)
end_srt = format_timestamp_srt(end_time)
f.write(f"{counter}\n")
f.write(f"{start_srt} --> {end_srt}\n")
f.write(f"{text}\n\n")
counter += 1
def format_timestamp_srt(seconds):
"""Convert seconds to SRT timestamp format."""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millis = int((seconds % 1) * 1000)
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
def extract_audio_from_video(video_path):
"""Extract audio from video file."""
try:
video = VideoFileClip(video_path)
audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
video.audio.write_audiofile(audio_path, codec='pcm_s16le', verbose=False, logger=None)
video.close()
return audio_path
except Exception as e:
raise Exception(f"Failed to extract audio: {str(e)}")
def burn_subtitles_to_video(video_path, transcription_data, progress=gr.Progress()):
"""
Burn subtitles directly into the video.
"""
try:
progress(0.1, desc="Loading video...")
video = VideoFileClip(video_path)
progress(0.3, desc="Creating subtitle clips...")
subtitle_clips = []
for item in transcription_data:
start_time = item['start']
end_time = item['end']
text = item['text'].strip()
if text and end_time > start_time:
# Create text clip with styling
txt_clip = (TextClip(
text,
fontsize=40,
color='white',
font='Arial-Bold',
stroke_color='black',
stroke_width=2,
method='caption',
size=(video.w * 0.9, None),
align='center'
)
.set_position(('center', video.h * 0.85))
.set_start(start_time)
.set_duration(end_time - start_time))
subtitle_clips.append(txt_clip)
progress(0.6, desc="Compositing video with subtitles...")
# Composite video with subtitles
final_video = CompositeVideoClip([video] + subtitle_clips)
progress(0.8, desc="Rendering final video...")
output_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
final_video.write_videofile(
output_path,
codec='libx264',
audio_codec='aac',
temp_audiofile=tempfile.NamedTemporaryFile(suffix=".m4a", delete=False).name,
remove_temp=True,
verbose=False,
logger=None
)
video.close()
final_video.close()
progress(1.0, desc="Done!")
return output_path
except Exception as e:
raise Exception(f"Failed to create subtitled video: {str(e)}")
@spaces.GPU
def process_video(video_path, task="transcribe", language=None, subtitle_format="burned", progress=gr.Progress()):
"""
Process video: extract audio, transcribe, and add subtitles.
"""
if video_path is None:
return None, "Please provide a video file.", None
temp_files = []
try:
# Extract audio from video
progress(0, desc="Extracting audio from video...")
audio_path = extract_audio_from_video(video_path)
temp_files.append(audio_path)
# Check audio duration
duration = get_audio_duration(audio_path)
chunk_duration = 300 # 5 minutes per chunk
if duration and duration > chunk_duration:
progress(0.1, desc=f"Audio is {duration:.1f}s long. Slicing into chunks...")
audio_chunks = slice_audio(audio_path, chunk_duration)
temp_files.extend(audio_chunks)
else:
audio_chunks = [audio_path]
# Transcribe each chunk with timestamps
all_transcriptions = []
total_chunks = len(audio_chunks)
for idx, chunk_path in enumerate(audio_chunks):
progress(0.1 + (idx / total_chunks) * 0.5, desc=f"Transcribing chunk {idx + 1}/{total_chunks}...")
result = transcribe_audio_chunk(chunk_path, task, language, return_timestamps=True)
if "chunks" in result:
chunk_offset = idx * chunk_duration
for word_chunk in result["chunks"]:
start = word_chunk["timestamp"][0]
end = word_chunk["timestamp"][1]
if start is not None and end is not None:
all_transcriptions.append({
"start": start + chunk_offset,
"end": end + chunk_offset,
"text": word_chunk["text"]
})
if not all_transcriptions:
return None, "No transcription data available. Timestamps may have failed.", None
# Merge close timestamps for better subtitle readability
progress(0.6, desc="Optimizing subtitle timing...")
merged_transcriptions = merge_subtitle_segments(all_transcriptions, max_duration=5.0, max_words=15)
# Generate full text transcript
full_text = " ".join([t["text"] for t in merged_transcriptions])
transcript_output = f"**Verbatim Transcription:**\n{full_text}\n\n"
transcript_output += f"*Total duration: {duration:.1f}s | {len(merged_transcriptions)} subtitle segments*"
if subtitle_format == "burned":
# Burn subtitles into video
progress(0.7, desc="Creating video with burned-in subtitles...")
output_video = burn_subtitles_to_video(video_path, merged_transcriptions, progress)
return output_video, transcript_output, None
elif subtitle_format == "srt":
# Create SRT file
progress(0.7, desc="Creating SRT subtitle file...")
srt_path = tempfile.NamedTemporaryFile(suffix=".srt", delete=False).name
create_srt_file(merged_transcriptions, srt_path)
return None, transcript_output, srt_path
else: # both
progress(0.7, desc="Creating video with subtitles and SRT file...")
output_video = burn_subtitles_to_video(video_path, merged_transcriptions, progress)
srt_path = tempfile.NamedTemporaryFile(suffix=".srt", delete=False).name
create_srt_file(merged_transcriptions, srt_path)
return output_video, transcript_output, srt_path
except Exception as e:
return None, f"Error processing video: {str(e)}", None
finally:
# Clean up temporary audio files (keep video and srt outputs)
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except:
pass
def transcribe_audio(audio, task="transcribe", return_timestamps=False, language=None, progress=gr.Progress()):
"""
Transcribe audio with VERY VERBATIM output using CrisperWhisper.
CrisperWhisper transcribes every spoken word exactly as it is, including:
- Fillers (um, uh, ah, er, mm)
- Pauses and hesitations
- Stutters and repetitions
- False starts
- Non-standard utterances
"""
if audio is None:
return "Please provide an audio file or recording."
temp_files = []
try:
# Handle different audio input formats
if isinstance(audio, str):
audio_path = audio
elif isinstance(audio, tuple):
sr, audio_data = audio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
import scipy.io.wavfile
scipy.io.wavfile.write(temp_file.name, sr, audio_data)
audio_path = temp_file.name
temp_files.append(audio_path)
else:
return "Unsupported audio format."
# Check audio duration and slice if necessary
duration = get_audio_duration(audio_path)
chunk_duration = 300 # 5 minutes per chunk
if duration and duration > chunk_duration:
progress(0, desc=f"Audio is {duration:.1f}s long. Slicing into chunks...")
audio_chunks = slice_audio(audio_path, chunk_duration)
temp_files.extend(audio_chunks)
else:
audio_chunks = [audio_path]
# Process each chunk
all_transcriptions = []
total_chunks = len(audio_chunks)
for idx, chunk_path in enumerate(audio_chunks):
progress((idx + 1) / total_chunks, desc=f"Transcribing chunk {idx + 1}/{total_chunks}...")
result = transcribe_audio_chunk(chunk_path, task, language, return_timestamps)
if return_timestamps and "chunks" in result:
chunk_offset = idx * chunk_duration
chunk_text = result["text"]
timestamp_text = []
for word_chunk in result["chunks"]:
start = word_chunk["timestamp"][0]
end = word_chunk["timestamp"][1]
if start is not None and end is not None:
timestamp_text.append({
"start": start + chunk_offset,
"end": end + chunk_offset,
"text": word_chunk["text"]
})
all_transcriptions.append({
"text": chunk_text,
"timestamps": timestamp_text
})
else:
all_transcriptions.append({
"text": result["text"],
"timestamps": []
})
# Combine all transcriptions
full_text = " ".join([t["text"] for t in all_transcriptions])
output = f"**Verbatim Transcription:**\n{full_text}\n"
if return_timestamps:
output += "\n**Word-level Timestamps:**\n"
for trans in all_transcriptions:
for ts in trans["timestamps"]:
output += f"[{ts['start']:.2f}s - {ts['end']:.2f}s] {ts['text']}\n"
if duration:
output += f"\n*Total duration: {duration:.1f}s | Processed in {total_chunks} chunk(s)*"
return output
except Exception as e:
return f"Error during transcription: {str(e)}"
finally:
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except:
pass
# Language options for manual selection
LANGUAGES = {
"Auto-detect": None,
"English": "en",
"Spanish": "es",
"French": "fr",
"German": "de",
"Italian": "it",
"Portuguese": "pt",
"Dutch": "nl",
"Russian": "ru",
"Chinese": "zh",
"Japanese": "ja",
"Korean": "ko",
"Arabic": "ar",
"Hindi": "hi",
"Turkish": "tr",
"Polish": "pl",
"Ukrainian": "uk",
"Vietnamese": "vi",
"Thai": "th",
"Indonesian": "id",
"Czech": "cs",
"Romanian": "ro",
"Swedish": "sv",
"Danish": "da",
"Norwegian": "no",
"Finnish": "fi",
"Greek": "el",
"Hebrew": "he",
}
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# πŸŽ™οΈ Very Verbatim Multilingual Speech-to-Text
Powered by **CrisperWhisper** - specifically designed for verbatim transcription with ZeroGPU acceleration.
## πŸ”₯ TRUE Verbatim Transcription
Unlike standard Whisper (which omits disfluencies), **CrisperWhisper captures EVERYTHING**:
- βœ… **Fillers**: um, uh, ah, er, mm, like, you know
- βœ… **Hesitations**: pauses, breath sounds, stutters
- βœ… **False Starts**: "I was- I went to the store"
- βœ… **Repetitions**: "I I I think that..."
- βœ… **Disfluencies**: Every non-fluent speech element
- βœ… **Accurate Word-Level Timestamps**: Precise timing even around disfluencies
- βœ… **Multilingual**: Supports 99+ languages
- βœ… **Long Audio Support**: Automatic 5-minute chunking
- βœ… **Video Subtitles**: Automatic caption generation with burned-in or SRT output
**Perfect for:** Legal transcription, linguistic research, therapy sessions, interviews,
conversational AI training, video subtitling, or any use case requiring exact speech capture.
"""
)
with gr.Tabs():
# Audio Tab
with gr.Tab("🎀 Audio Transcription"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio Input"
)
with gr.Row():
task_radio = gr.Radio(
choices=["transcribe", "translate"],
value="transcribe",
label="Task",
info="Transcribe verbatim or translate to English"
)
language_dropdown = gr.Dropdown(
choices=list(LANGUAGES.keys()),
value="Auto-detect",
label="Language",
info="Select language or use auto-detect"
)
timestamps_checkbox = gr.Checkbox(
label="Show word-level timestamps",
value=True,
info="Display precise timing for each word"
)
transcribe_btn = gr.Button("🎯 Transcribe Verbatim", variant="primary", size="lg")
with gr.Column():
output_text = gr.Textbox(
label="Verbatim Transcription (includes all um, uh, hesitations)",
lines=20,
show_copy_button=True,
placeholder="Your VERY verbatim transcription will appear here...\n\nEvery um, uh, stutter, and hesitation will be captured!"
)
gr.Markdown(
"""
### Why CrisperWhisper for Verbatim?
**Standard Whisper** is trained to transcribe the "intended meaning" - it automatically cleans up:
- ❌ Removes "um", "uh", "ah"
- ❌ Omits false starts
- ❌ Skips repetitions
- ❌ Ignores stutters
**CrisperWhisper** is specifically trained for verbatim transcription:
- βœ… Keeps every filler word
- βœ… Preserves all disfluencies
- βœ… Captures exact speech patterns
- βœ… Accurate timestamps around hesitations
"""
)
# Video Tab
with gr.Tab("🎬 Video Subtitles"):
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Video Input",
sources=["upload"]
)
with gr.Row():
video_task_radio = gr.Radio(
choices=["transcribe", "translate"],
value="transcribe",
label="Task",
info="Transcribe verbatim or translate to English"
)
video_language_dropdown = gr.Dropdown(
choices=list(LANGUAGES.keys()),
value="Auto-detect",
label="Language",
info="Select language or use auto-detect"
)
subtitle_format_radio = gr.Radio(
choices=[
("Burned-in subtitles (permanent)", "burned"),
("SRT file only (external subtitles)", "srt"),
("Both burned-in video + SRT file", "both")
],
value="burned",
label="Subtitle Format",
info="Choose output format"
)
process_video_btn = gr.Button("🎬 Generate Subtitles", variant="primary", size="lg")
with gr.Column():
output_video = gr.Video(
label="Video with Subtitles",
interactive=False
)
video_transcript = gr.Textbox(
label="Verbatim Transcript",
lines=10,
show_copy_button=True,
placeholder="Transcript will appear here..."
)
output_srt = gr.File(
label="Download SRT Subtitles",
interactive=False
)
gr.Markdown(
"""
### Video Subtitle Features
- **Burned-in Subtitles**: Permanently embedded in video (white text with black outline)
- **SRT File**: External subtitle file compatible with video players and editing software
- **Verbatim Captions**: All hesitations, fillers, and disfluencies included
- **Smart Timing**: Automatically merges short segments for readability
- **Long Video Support**: Handles videos of any length (automatic chunking)
### Tips
- Use "Burned-in" for sharing videos with guaranteed subtitle visibility
- Use "SRT file" for flexible editing and translation
- Use "Both" to have both options available
- Subtitles are positioned at the bottom center of the video
"""
)
gr.Markdown(
"""
### Use Cases
- **Legal/Court Transcription**: Exact wording required by law
- **Linguistic Research**: Study of natural speech patterns and disfluencies
- **Medical/Therapy Sessions**: Capturing patient speech patterns
- **Interview Transcription**: Preserving speaker mannerisms
- **Conversational AI Training**: Realistic dialogue data
- **Accessibility**: Complete transcripts and captions for deaf/hard-of-hearing
- **Video Content**: YouTube, social media, educational content with accurate captions
- **Language Learning**: Analyzing natural spoken language
### Tips for Best Results
- Clear audio with minimal background noise works best
- The model captures quiet speech - ensure consistent audio levels
- Manual language selection can improve accuracy
- Long files are automatically processed in 5-minute chunks
- For videos, ensure good audio quality for best subtitle accuracy
"""
)
# Set up event handlers
def transcribe_wrapper(audio, task, timestamps, language_name, progress=gr.Progress()):
language_code = LANGUAGES[language_name]
return transcribe_audio(audio, task, timestamps, language_code, progress)
def video_wrapper(video, task, language_name, subtitle_format, progress=gr.Progress()):
language_code = LANGUAGES[language_name]
return process_video(video, task, language_code, subtitle_format, progress)
transcribe_btn.click(
fn=transcribe_wrapper,
inputs=[audio_input, task_radio, timestamps_checkbox, language_dropdown],
outputs=output_text
)
process_video_btn.click(
fn=video_wrapper,
inputs=[video_input, video_task_radio, video_language_dropdown, subtitle_format_radio],
outputs=[output_video, video_transcript, output_srt]
)
# Launch the app
if __name__ == "__main__":
demo.launch()