app.py
CHANGED
@@ -5,9 +5,6 @@ from diffusers.utils import export_to_video
|
|
5 |
from diffusers import AutoencoderKLWan, WanPipeline
|
6 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
7 |
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
8 |
-
import os
|
9 |
-
import tempfile
|
10 |
-
from typing import List, Union, Optional
|
11 |
|
12 |
# Define model options
|
13 |
MODEL_OPTIONS = {
|
@@ -36,15 +33,8 @@ def generate_video(
|
|
36 |
num_frames,
|
37 |
guidance_scale,
|
38 |
num_inference_steps,
|
39 |
-
output_fps
|
40 |
-
|
41 |
-
enable_second_pass,
|
42 |
-
second_pass_scale,
|
43 |
-
second_pass_denoise,
|
44 |
-
second_pass_flow_shift,
|
45 |
-
second_pass_cfg,
|
46 |
-
show_both_outputs
|
47 |
-
) -> tuple:
|
48 |
# Get model ID from selection
|
49 |
model_id = MODEL_OPTIONS[model_choice]
|
50 |
|
@@ -86,130 +76,25 @@ def generate_video(
|
|
86 |
# Enable CPU offload for low VRAM
|
87 |
pipe.enable_model_cpu_offload()
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
# First pass - generate base video
|
93 |
-
print("Running first pass...")
|
94 |
-
first_pass = pipe(
|
95 |
prompt=prompt,
|
96 |
negative_prompt=negative_prompt,
|
97 |
height=height,
|
98 |
width=width,
|
99 |
num_frames=num_frames,
|
100 |
guidance_scale=guidance_scale,
|
101 |
-
num_inference_steps=num_inference_steps
|
102 |
-
|
103 |
-
output_type="pt", # Always get PyTorch tensors for the first pass
|
104 |
-
return_dict=True
|
105 |
-
)
|
106 |
-
|
107 |
-
# Get the frames or latents from the first pass output
|
108 |
-
first_pass_frames = first_pass.frames[0]
|
109 |
-
|
110 |
-
# Output the first pass video if needed
|
111 |
-
if not enable_second_pass or (enable_second_pass and show_both_outputs):
|
112 |
-
# Export first pass to video
|
113 |
-
first_pass_file = "output_first_pass.mp4"
|
114 |
-
export_to_video(first_pass_frames, first_pass_file, fps=output_fps)
|
115 |
-
output_files.append(first_pass_file)
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
print("Running second pass with scale factor:", second_pass_scale)
|
121 |
-
|
122 |
-
# For second pass, we need to first encode the frames to get latents
|
123 |
-
print("Encoding first pass frames to latents...")
|
124 |
-
with torch.no_grad():
|
125 |
-
# Move frames to the same device as the VAE
|
126 |
-
first_pass_frames = first_pass_frames.to(pipe.vae.device)
|
127 |
-
# Encode to get latents
|
128 |
-
latents = pipe.vae.encode(first_pass_frames).latent_dist.sample()
|
129 |
-
|
130 |
-
# Resize latents for second pass (upscale)
|
131 |
-
new_height = int(height * second_pass_scale)
|
132 |
-
new_width = int(width * second_pass_scale)
|
133 |
-
|
134 |
-
# Ensure dimensions are multiples of 8
|
135 |
-
new_height = (new_height // 8) * 8
|
136 |
-
new_width = (new_width // 8) * 8
|
137 |
-
|
138 |
-
print(f"Upscaling latents from {height}x{width} to {new_height}x{new_width}")
|
139 |
-
|
140 |
-
# Get latent dimensions
|
141 |
-
latent_height = latents.shape[2] # Should be height//8
|
142 |
-
latent_width = latents.shape[3] # Should be width//8
|
143 |
-
|
144 |
-
# Calculate new latent dimensions
|
145 |
-
new_latent_height = new_height // 8
|
146 |
-
new_latent_width = new_width // 8
|
147 |
-
|
148 |
-
# Upscale latents using interpolate
|
149 |
-
upscaled_latents = torch.nn.functional.interpolate(
|
150 |
-
latents,
|
151 |
-
size=(num_frames, new_latent_height, new_latent_width),
|
152 |
-
mode="trilinear",
|
153 |
-
align_corners=False
|
154 |
-
)
|
155 |
-
|
156 |
-
# Update scheduler for second pass if using different flow shift
|
157 |
-
if scheduler_type == "UniPCMultistepScheduler":
|
158 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
159 |
-
pipe.scheduler.config,
|
160 |
-
flow_shift=second_pass_flow_shift
|
161 |
-
)
|
162 |
-
else:
|
163 |
-
pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=second_pass_flow_shift)
|
164 |
-
|
165 |
-
# Calculate noise level for partial denoising
|
166 |
-
# For noise scheduler, 0 means no noise (final step) and 1 means full noise (first step)
|
167 |
-
# So we convert our denoise strength to a timestep in the schedule
|
168 |
-
start_step = int(second_pass_denoise * num_inference_steps)
|
169 |
-
|
170 |
-
# Run second pass with the upscaled latents and partial denoising
|
171 |
-
print(f"Denoising from step {start_step} of {num_inference_steps} (denoise strength: {second_pass_denoise})")
|
172 |
-
|
173 |
-
# Use the second pass CFG value
|
174 |
-
second_pass_guidance = second_pass_cfg if second_pass_cfg > 0 else guidance_scale
|
175 |
-
|
176 |
-
second_pass = pipe(
|
177 |
-
prompt=prompt,
|
178 |
-
negative_prompt=negative_prompt,
|
179 |
-
height=new_height,
|
180 |
-
width=new_width,
|
181 |
-
num_frames=num_frames,
|
182 |
-
guidance_scale=second_pass_guidance,
|
183 |
-
num_inference_steps=num_inference_steps,
|
184 |
-
latents=upscaled_latents, # Use the upscaled latents
|
185 |
-
strength=second_pass_denoise, # Partial denoising
|
186 |
-
output_type="pt",
|
187 |
-
return_dict=True
|
188 |
-
)
|
189 |
-
|
190 |
-
# Export second pass to video
|
191 |
-
second_pass_file = "output_second_pass.mp4"
|
192 |
-
export_to_video(second_pass.frames[0], second_pass_file, fps=output_fps)
|
193 |
-
output_files.append(second_pass_file)
|
194 |
|
195 |
-
|
196 |
-
if enable_second_pass and show_both_outputs and len(output_files) > 1:
|
197 |
-
return output_files[0], output_files[1] # Return both first and second pass
|
198 |
-
elif len(output_files) > 0:
|
199 |
-
if enable_second_pass:
|
200 |
-
# Return only second pass (and None for first output if showing both)
|
201 |
-
return None if show_both_outputs else output_files[0], output_files[0]
|
202 |
-
else:
|
203 |
-
# Return first pass only
|
204 |
-
return output_files[0], None
|
205 |
-
else:
|
206 |
-
return None, None
|
207 |
|
208 |
-
|
209 |
with gr.Blocks() as demo:
|
210 |
-
# Import gr.update for visibility control
|
211 |
-
from gradio import update
|
212 |
-
|
213 |
gr.HTML("""
|
214 |
<p align="center">
|
215 |
<svg version="1.1" viewBox="0 0 1200 295" xmlns="http://www.w3.org/2000/svg" xmlns:v="https://vecta.io/nano" width="400">
|
@@ -219,7 +104,7 @@ with gr.Blocks() as demo:
|
|
219 |
💻 <a href="https://www.markury.dev/"><b>Website</b></a>    |    🤗 <a href="https://huggingface.co/markury"><b>Hugging Face</b></a>    |    💿 <a href="https://thebulge.xyz"><b>Discord</b></a>
|
220 |
</p>
|
221 |
""")
|
222 |
-
gr.Markdown("# Wan 2.1 T2V 1.3B with LoRA
|
223 |
|
224 |
with gr.Row():
|
225 |
with gr.Column(scale=1):
|
@@ -324,82 +209,11 @@ with gr.Blocks() as demo:
|
|
324 |
step=1
|
325 |
)
|
326 |
|
327 |
-
# Add Second Pass options
|
328 |
-
with gr.Accordion("Second Pass Refinement (HiresFix)", open=False):
|
329 |
-
enable_second_pass = gr.Checkbox(
|
330 |
-
label="Enable Second Pass Refinement",
|
331 |
-
value=False,
|
332 |
-
info="Scale up and refine the video with a second denoising pass"
|
333 |
-
)
|
334 |
-
|
335 |
-
with gr.Row():
|
336 |
-
second_pass_scale = gr.Slider(
|
337 |
-
label="Scale Factor",
|
338 |
-
minimum=1.0,
|
339 |
-
maximum=2.0,
|
340 |
-
value=1.25,
|
341 |
-
step=0.05,
|
342 |
-
info="How much to upscale the video for refinement"
|
343 |
-
)
|
344 |
-
second_pass_denoise = gr.Slider(
|
345 |
-
label="Denoise Strength",
|
346 |
-
minimum=0.1,
|
347 |
-
maximum=1.0,
|
348 |
-
value=0.6,
|
349 |
-
step=0.05,
|
350 |
-
info="Lower values preserve more of the original details"
|
351 |
-
)
|
352 |
-
|
353 |
-
with gr.Row():
|
354 |
-
second_pass_flow_shift = gr.Slider(
|
355 |
-
label="Second Pass Flow Shift",
|
356 |
-
minimum=1.0,
|
357 |
-
maximum=12.0,
|
358 |
-
value=3.0,
|
359 |
-
step=0.5,
|
360 |
-
info="Flow shift value for the second pass (optional)"
|
361 |
-
)
|
362 |
-
second_pass_cfg = gr.Slider(
|
363 |
-
label="Second Pass CFG",
|
364 |
-
minimum=0.0,
|
365 |
-
maximum=15.0,
|
366 |
-
value=0.0,
|
367 |
-
step=0.5,
|
368 |
-
info="Set to 0 to use the same value as first pass"
|
369 |
-
)
|
370 |
-
|
371 |
-
show_both_outputs = gr.Checkbox(
|
372 |
-
label="Show Both Outputs",
|
373 |
-
value=False,
|
374 |
-
info="Display both original and refined videos"
|
375 |
-
)
|
376 |
-
|
377 |
generate_btn = gr.Button("Generate Video")
|
378 |
|
379 |
with gr.Column(scale=1):
|
380 |
-
|
381 |
-
with gr.Group():
|
382 |
-
output_video = gr.Video(label="Generated Video")
|
383 |
-
second_output_video = gr.Video(label="Second Pass Video", visible=False)
|
384 |
-
|
385 |
-
# Control visibility through the UI changes directly
|
386 |
-
def toggle_second_video(enable_pass, show_both):
|
387 |
-
return gr.update(visible=enable_pass and show_both)
|
388 |
-
|
389 |
-
# Update visibility when checkboxes change
|
390 |
-
enable_second_pass.change(
|
391 |
-
fn=toggle_second_video,
|
392 |
-
inputs=[enable_second_pass, show_both_outputs],
|
393 |
-
outputs=[second_output_video]
|
394 |
-
)
|
395 |
-
|
396 |
-
show_both_outputs.change(
|
397 |
-
fn=toggle_second_video,
|
398 |
-
inputs=[enable_second_pass, show_both_outputs],
|
399 |
-
outputs=[second_output_video]
|
400 |
-
)
|
401 |
|
402 |
-
# Fixed output handling for Gradio
|
403 |
generate_btn.click(
|
404 |
fn=generate_video,
|
405 |
inputs=[
|
@@ -416,16 +230,9 @@ with gr.Blocks() as demo:
|
|
416 |
num_frames,
|
417 |
guidance_scale,
|
418 |
num_inference_steps,
|
419 |
-
output_fps
|
420 |
-
# Second pass parameters
|
421 |
-
enable_second_pass,
|
422 |
-
second_pass_scale,
|
423 |
-
second_pass_denoise,
|
424 |
-
second_pass_flow_shift,
|
425 |
-
second_pass_cfg,
|
426 |
-
show_both_outputs
|
427 |
],
|
428 |
-
outputs=
|
429 |
)
|
430 |
|
431 |
gr.Markdown("""
|
@@ -435,12 +242,6 @@ with gr.Blocks() as demo:
|
|
435 |
- Number of frames should be of the form 4k+1 (e.g., 33, 81)
|
436 |
- Stick to lower frame counts. Even at 480p, an 81 frame sequence at 30 steps will nearly time out the request in this space.
|
437 |
|
438 |
-
## Second Pass Refinement Tips:
|
439 |
-
- The second pass (similar to HiresFix) can enhance details by upscaling and refining the video
|
440 |
-
- Start with a scale factor around 1.25 and denoise strength of 0.6
|
441 |
-
- Lower denoise values preserve more of the original video structure
|
442 |
-
- The second pass will increase generation time substantially - use with caution!
|
443 |
-
|
444 |
## Using LoRAs with multiple safetensors files:
|
445 |
If you encounter an error stating "more than one weights file", you need to specify the exact weight file name in the "LoRA Weight Name" field.
|
446 |
You can find this by browsing the repository on Hugging Face and looking for the safetensors files (common names include: adapter_model.safetensors, pytorch_lora_weights.safetensors).
|
|
|
5 |
from diffusers import AutoencoderKLWan, WanPipeline
|
6 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
7 |
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
|
|
|
|
|
|
8 |
|
9 |
# Define model options
|
10 |
MODEL_OPTIONS = {
|
|
|
33 |
num_frames,
|
34 |
guidance_scale,
|
35 |
num_inference_steps,
|
36 |
+
output_fps
|
37 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Get model ID from selection
|
39 |
model_id = MODEL_OPTIONS[model_choice]
|
40 |
|
|
|
76 |
# Enable CPU offload for low VRAM
|
77 |
pipe.enable_model_cpu_offload()
|
78 |
|
79 |
+
# Generate video
|
80 |
+
output = pipe(
|
|
|
|
|
|
|
|
|
81 |
prompt=prompt,
|
82 |
negative_prompt=negative_prompt,
|
83 |
height=height,
|
84 |
width=width,
|
85 |
num_frames=num_frames,
|
86 |
guidance_scale=guidance_scale,
|
87 |
+
num_inference_steps=num_inference_steps
|
88 |
+
).frames[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Export to video
|
91 |
+
temp_file = "output.mp4"
|
92 |
+
export_to_video(output, temp_file, fps=output_fps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
return temp_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
# Create the Gradio interface
|
97 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
98 |
gr.HTML("""
|
99 |
<p align="center">
|
100 |
<svg version="1.1" viewBox="0 0 1200 295" xmlns="http://www.w3.org/2000/svg" xmlns:v="https://vecta.io/nano" width="400">
|
|
|
104 |
💻 <a href="https://www.markury.dev/"><b>Website</b></a>    |    🤗 <a href="https://huggingface.co/markury"><b>Hugging Face</b></a>    |    💿 <a href="https://thebulge.xyz"><b>Discord</b></a>
|
105 |
</p>
|
106 |
""")
|
107 |
+
gr.Markdown("# Wan 2.1 T2V 1.3B with LoRA")
|
108 |
|
109 |
with gr.Row():
|
110 |
with gr.Column(scale=1):
|
|
|
209 |
step=1
|
210 |
)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
generate_btn = gr.Button("Generate Video")
|
213 |
|
214 |
with gr.Column(scale=1):
|
215 |
+
output_video = gr.Video(label="Generated Video")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
|
|
217 |
generate_btn.click(
|
218 |
fn=generate_video,
|
219 |
inputs=[
|
|
|
230 |
num_frames,
|
231 |
guidance_scale,
|
232 |
num_inference_steps,
|
233 |
+
output_fps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
],
|
235 |
+
outputs=output_video
|
236 |
)
|
237 |
|
238 |
gr.Markdown("""
|
|
|
242 |
- Number of frames should be of the form 4k+1 (e.g., 33, 81)
|
243 |
- Stick to lower frame counts. Even at 480p, an 81 frame sequence at 30 steps will nearly time out the request in this space.
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
## Using LoRAs with multiple safetensors files:
|
246 |
If you encounter an error stating "more than one weights file", you need to specify the exact weight file name in the "LoRA Weight Name" field.
|
247 |
You can find this by browsing the repository on Hugging Face and looking for the safetensors files (common names include: adapter_model.safetensors, pytorch_lora_weights.safetensors).
|