Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer, DataCollatorForLanguageModeling, Trainer, TrainingArguments | |
from datasets import load_dataset | |
# Load the pre-trained model and tokenizer | |
model_name = "microsoft/DialoGPT-medium" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Add padding token if not present | |
if tokenizer.pad_token is None: | |
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) | |
# Resize model embeddings to accommodate the new padding token | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
model.resize_token_embeddings(len(tokenizer)) | |
# Load your dataset | |
dataset = load_dataset('text', data_files={'train': '/kaggle/input/rahul7star-data1/data.txt'}) | |
# Tokenize the dataset | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"]) | |
# Set up data collator and trainer | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, | |
mlm=False, | |
) | |
training_args = TrainingArguments( | |
output_dir="./results", | |
overwrite_output_dir=True, | |
num_train_epochs=3, | |
per_device_train_batch_size=4, | |
save_steps=10_000, | |
save_total_limit=2, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
data_collator=data_collator, | |
train_dataset=tokenized_datasets["train"], | |
) | |
# Train the model | |
trainer.train() | |
# Save the fine-tuned model and tokenizer | |
model.save_pretrained("/kaggle/working/finetuned_model") | |
tokenizer.save_pretrained("/kaggle/working/finetuned_tokenizer") |