File size: 11,575 Bytes
4a858d3 484e5ab 4a858d3 c5ea37c 4a858d3 484e5ab 4a858d3 484e5ab c5ea37c 4c52eb9 4a858d3 a8294f2 c5ea37c a8294f2 4a858d3 a8294f2 4a858d3 3772f42 4a858d3 a8294f2 4a858d3 a8294f2 4a858d3 3772f42 4a858d3 a8294f2 4a858d3 a8294f2 4a858d3 a8294f2 4a858d3 a8294f2 4a858d3 a8294f2 4a858d3 a8294f2 4a858d3 484e5ab 62e78ef 484e5ab a8294f2 484e5ab 62e78ef 484e5ab 62e78ef 484e5ab 62e78ef 41c7a59 62e78ef 484e5ab 4a858d3 a8294f2 4a858d3 c5ea37c a8294f2 c5ea37c 4a858d3 a8294f2 4a858d3 a8294f2 4a858d3 a8294f2 407b252 4a858d3 62e78ef 4a858d3 cdba7f7 4a858d3 34b2ab3 4a858d3 e32ef75 4a858d3 62e78ef a8294f2 34b2ab3 a8294f2 62e78ef c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c 5e0a689 a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from flask import request
from flask_login import login_required
from api.db.services.dialog_service import DialogService, ConversationService
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, LLMBundle
from api.settings import access_logger, stat_logger, retrievaler
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.utils.api_utils import get_json_result
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp.search import index_name
from rag.utils import num_tokens_from_string, encoder, rmSpace
@manager.route('/set', methods=['POST'])
@login_required
def set_conversation():
req = request.json
conv_id = req.get("conversation_id")
if conv_id:
del req["conversation_id"]
try:
if not ConversationService.update_by_id(conv_id, req):
return get_data_error_result(retmsg="Conversation not found!")
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(
retmsg="Fail to update a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
try:
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(retmsg="Dialog not found")
conv = {
"id": get_uuid(),
"dialog_id": req["dialog_id"],
"name": req.get("name", "New conversation"),
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_data_error_result(retmsg="Fail to new a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/get', methods=['GET'])
@login_required
def get():
conv_id = request.args["conversation_id"]
try:
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(retmsg="Conversation not found!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST'])
@login_required
def rm():
conv_ids = request.json["conversation_ids"]
try:
for cid in conv_ids:
ConversationService.delete_by_id(cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET'])
@login_required
def list_convsersation():
dialog_id = request.args["dialog_id"]
try:
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
convs = [d.to_dict() for d in convs]
return get_json_result(data=convs)
except Exception as e:
return server_error_response(e)
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg: tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts: total += m["count"]
return total
c = count()
if c < max_length: return c, msg
msg = [m for m in msg if m.role in ["system", "user"]]
c = count()
if c < max_length: return c, msg
msg_ = [m for m in msg[:-1] if m.role == "system"]
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length: return c, msg
ll = num_tokens_from_string(msg_[0].content)
l = num_tokens_from_string(msg_[-1].content)
if ll / (ll + l) > 0.8:
m = msg_[0].content
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[0].content = m
return max_length, msg
m = msg_[1].content
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[1].content = m
return max_length, msg
@manager.route('/completion', methods=['POST'])
@login_required
@validate_request("conversation_id", "messages")
def completion():
req = request.json
msg = []
for m in req["messages"]:
if m["role"] == "system": continue
if m["role"] == "assistant" and not msg: continue
msg.append({"role": m["role"], "content": m["content"]})
try:
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
conv.message.append(msg[-1])
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")
del req["conversation_id"]
del req["messages"]
ans = chat(dia, msg, **req)
if not conv.reference: conv.reference = []
conv.reference.append(ans["reference"])
conv.message.append({"role": "assistant", "content": ans["answer"]})
ConversationService.update_by_id(conv.id, conv.to_dict())
return get_json_result(data=ans)
except Exception as e:
return server_error_response(e)
def chat(dialog, messages, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
llm = LLMService.query(llm_name=dialog.llm_id)
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
llm = llm[0]
question = messages[-1]["content"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
## try to use sql if field mapping is good to go
if field_map:
stat_logger.info("Use SQL to retrieval.")
markdown_tbl, chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
if markdown_tbl:
return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
prompt_config = dialog.prompt_config
for p in prompt_config["parameters"]:
if p["key"] == "knowledge": continue
if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight, top=1024, aggs=False)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
if not knowledges and prompt_config.get("empty_response"):
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
if knowledges:
answer = retrievaler.insert_citations(answer,
[ck["content_ltks"] for ck in kbinfos["chunks"]],
[ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
for c in kbinfos["chunks"]:
if c.get("vector"): del c["vector"]
return {"answer": answer, "reference": kbinfos}
def use_sql(question, field_map, tenant_id, chat_mdl):
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据我的问题写出sql。"
user_promt = """
表名:{};
数据库表字段说明如下:
{}
问题:{}
请写出SQL,且只要SQL,不要有其他说明及文字。
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question
)
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
stat_logger.info(f"“{question}” get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*?select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;;]|```).*", "", sql)
if sql[:len("select ")] != "select ":
return None, None
if sql[:len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
for k in field_map.keys():
if k in forbidden_select_fields4resume:continue
if len(flds) > 11:break
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
stat_logger.info(f"“{question}” get SQL(refined): {sql}")
tbl = retrievaler.sql_retrieval(sql, format="json")
if not tbl or len(tbl["rows"]) == 0: return None, None
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
# compose markdown table
clmns = "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
rows = ["|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
if not docid_idx or not docnm_idx:
access_logger.error("SQL missing field: " + sql)
return "\n".join([clmns, line, "\n".join(rows)]), []
rows = "\n".join([r + f"##{ii}$$" for ii, r in enumerate(rows)])
docid_idx = list(docid_idx)[0]
docnm_idx = list(docnm_idx)[0]
return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]
|