File size: 10,206 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
0cfb2df
3079197
 
 
4c52eb9
8f9784a
9bf75d4
4c52eb9
 
0cfb2df
3079197
 
 
 
 
 
 
 
f666f56
3079197
 
 
4c52eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b212e
4c52eb9
 
8887e47
4c52eb9
2edbd4b
 
4c52eb9
79ada0b
 
3079197
4c52eb9
79ada0b
 
4c52eb9
79ada0b
 
 
 
 
2edbd4b
8887e47
4c52eb9
79ada0b
 
 
 
4c52eb9
3079197
c1bdfb8
79ada0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f9784a
79ada0b
 
c1bdfb8
79ada0b
8f9784a
79ada0b
 
 
8f9784a
c1bdfb8
 
 
 
 
 
 
79ada0b
 
3079197
5e0a689
 
 
3079197
 
 
4a858d3
3079197
79ada0b
3079197
 
 
4a858d3
3079197
79ada0b
3079197
 
 
4a858d3
3079197
79ada0b
3079197
 
 
79ada0b
3079197
79ada0b
3079197
 
 
4a858d3
3079197
79ada0b
3079197
 
 
4a858d3
3079197
79ada0b
3079197
 
 
4a858d3
3079197
5e0a689
 
 
3079197
 
 
4a858d3
3079197
79ada0b
3079197
 
 
4a858d3
3079197
79ada0b
9fe9fc4
 
 
 
 
79ada0b
3079197
 
 
4a858d3
3079197
79ada0b
3079197
 
 
79ada0b
3079197
79ada0b
3079197
a8294f2
484e5ab
 
 
3079197
5e0a689
 
a8294f2
5e0a689
 
 
 
 
a8294f2
5e0a689
 
 
 
 
a8294f2
5e0a689
 
 
 
 
 
a8294f2
5e0a689
 
 
8887e47
5e0a689
9fe9fc4
 
 
 
 
 
 
 
 
7d85666
9fe9fc4
 
 
79ada0b
9fe9fc4
 
 
 
 
79ada0b
9fe9fc4
 
 
 
 
 
3079197
 
c1bdfb8
 
 
 
3079197
c1bdfb8
 
 
 
3079197
8f9784a
 
 
1ed30a6
 
004756c
b085dec
004756c
 
 
1ed30a6
 
3079197
 
 
 
8f9784a
4c52eb9
 
3079197
 
 
 
 
 
79ada0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import os
import time
import uuid

from api.db import LLMType, UserTenantRole
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM
from api.db.services import UserService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
from api.db.services.user_service import TenantService, UserTenantService
from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL


def init_superuser():
    user_info = {
        "id": uuid.uuid1().hex,
        "password": "admin",
        "nickname": "admin",
        "is_superuser": True,
        "email": "[email protected]",
        "creator": "system",
        "status": "1",
    }
    tenant = {
        "id": user_info["id"],
        "name": user_info["nickname"] + "‘s Kingdom",
        "llm_id": CHAT_MDL,
        "embd_id": EMBEDDING_MDL,
        "asr_id": ASR_MDL,
        "parser_ids": PARSERS,
        "img2txt_id": IMAGE2TEXT_MDL
    }
    usr_tenant = {
        "tenant_id": user_info["id"],
        "user_id": user_info["id"],
        "invited_by": user_info["id"],
        "role": UserTenantRole.OWNER
    }
    tenant_llm = []
    for llm in LLMService.query(fid=LLM_FACTORY):
        tenant_llm.append(
            {"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
             "api_key": API_KEY, "api_base": LLM_BASE_URL})

    if not UserService.save(**user_info):
        print("\033[93m【ERROR】\033[0mcan't init admin.")
        return
    TenantService.insert(**tenant)
    UserTenantService.insert(**usr_tenant)
    TenantLLMService.insert_many(tenant_llm)
    print(
        "【INFO】Super user initialized. \033[93memail: [email protected], password: admin\033[0m. Changing the password after logining is strongly recomanded.")

    chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
    msg = chat_mdl.chat(system="", history=[
                        {"role": "user", "content": "Hello!"}], gen_conf={})
    if msg.find("ERROR: ") == 0:
        print(
            "\33[91m【ERROR】\33[0m: ",
            "'{}' dosen't work. {}".format(
                tenant["llm_id"],
                msg))
    embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
    v, c = embd_mdl.encode(["Hello!"])
    if c == 0:
        print(
            "\33[91m【ERROR】\33[0m:",
            " '{}' dosen't work!".format(
                tenant["embd_id"]))


factory_infos = [{
    "name": "OpenAI",
    "logo": "",
    "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
    "status": "1",
}, {
    "name": "Tongyi-Qianwen",
    "logo": "",
    "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
    "status": "1",
}, {
    "name": "ZHIPU-AI",
    "logo": "",
    "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
    "status": "1",
},
    {
    "name": "Ollama",
    "logo": "",
    "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
        "status": "1",
}, {
    "name": "Moonshot",
    "logo": "",
    "tags": "LLM,TEXT EMBEDDING",
    "status": "1",
},
    # {
    #     "name": "文心一言",
    #     "logo": "",
    #     "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
    #     "status": "1",
    # },
]


def init_llm_factory():
    llm_infos = [
        # ---------------------- OpenAI ------------------------
        {
            "fid": factory_infos[0]["name"],
            "llm_name": "gpt-3.5-turbo",
            "tags": "LLM,CHAT,4K",
            "max_tokens": 4096,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[0]["name"],
            "llm_name": "gpt-3.5-turbo-16k-0613",
            "tags": "LLM,CHAT,16k",
            "max_tokens": 16385,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[0]["name"],
            "llm_name": "text-embedding-ada-002",
            "tags": "TEXT EMBEDDING,8K",
            "max_tokens": 8191,
            "model_type": LLMType.EMBEDDING.value
        }, {
            "fid": factory_infos[0]["name"],
            "llm_name": "whisper-1",
            "tags": "SPEECH2TEXT",
            "max_tokens": 25 * 1024 * 1024,
            "model_type": LLMType.SPEECH2TEXT.value
        }, {
            "fid": factory_infos[0]["name"],
            "llm_name": "gpt-4",
            "tags": "LLM,CHAT,8K",
            "max_tokens": 8191,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[0]["name"],
            "llm_name": "gpt-4-32k",
            "tags": "LLM,CHAT,32K",
            "max_tokens": 32768,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[0]["name"],
            "llm_name": "gpt-4-vision-preview",
            "tags": "LLM,CHAT,IMAGE2TEXT",
            "max_tokens": 765,
            "model_type": LLMType.IMAGE2TEXT.value
        },
        # ----------------------- Qwen -----------------------
        {
            "fid": factory_infos[1]["name"],
            "llm_name": "qwen-turbo",
            "tags": "LLM,CHAT,8K",
            "max_tokens": 8191,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[1]["name"],
            "llm_name": "qwen-plus",
            "tags": "LLM,CHAT,32K",
            "max_tokens": 32768,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[1]["name"],
            "llm_name": "qwen-max-1201",
            "tags": "LLM,CHAT,6K",
            "max_tokens": 5899,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[1]["name"],
            "llm_name": "text-embedding-v2",
            "tags": "TEXT EMBEDDING,2K",
            "max_tokens": 2048,
            "model_type": LLMType.EMBEDDING.value
        }, {
            "fid": factory_infos[1]["name"],
            "llm_name": "paraformer-realtime-8k-v1",
            "tags": "SPEECH2TEXT",
            "max_tokens": 25 * 1024 * 1024,
            "model_type": LLMType.SPEECH2TEXT.value
        }, {
            "fid": factory_infos[1]["name"],
            "llm_name": "qwen-vl-max",
            "tags": "LLM,CHAT,IMAGE2TEXT",
            "max_tokens": 765,
            "model_type": LLMType.IMAGE2TEXT.value
        },
        # ---------------------- ZhipuAI ----------------------
        {
            "fid": factory_infos[2]["name"],
            "llm_name": "glm-3-turbo",
            "tags": "LLM,CHAT,",
            "max_tokens": 128 * 1000,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[2]["name"],
            "llm_name": "glm-4",
            "tags": "LLM,CHAT,",
            "max_tokens": 128 * 1000,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[2]["name"],
            "llm_name": "glm-4v",
            "tags": "LLM,CHAT,IMAGE2TEXT",
            "max_tokens": 2000,
            "model_type": LLMType.IMAGE2TEXT.value
        },
        {
            "fid": factory_infos[2]["name"],
            "llm_name": "embedding-2",
            "tags": "TEXT EMBEDDING",
            "max_tokens": 512,
            "model_type": LLMType.EMBEDDING.value
        },
        # ------------------------ Moonshot -----------------------
        {
            "fid": factory_infos[4]["name"],
            "llm_name": "moonshot-v1-8k",
            "tags": "LLM,CHAT,",
            "max_tokens": 7900,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[4]["name"],
            "llm_name": "flag-embedding",
            "tags": "TEXT EMBEDDING,",
            "max_tokens": 128 * 1000,
            "model_type": LLMType.EMBEDDING.value
        }, {
            "fid": factory_infos[4]["name"],
            "llm_name": "moonshot-v1-32k",
            "tags": "LLM,CHAT,",
            "max_tokens": 32768,
            "model_type": LLMType.CHAT.value
        }, {
            "fid": factory_infos[4]["name"],
            "llm_name": "moonshot-v1-128k",
            "tags": "LLM,CHAT",
            "max_tokens": 128 * 1000,
            "model_type": LLMType.CHAT.value
        },
    ]
    for info in factory_infos:
        try:
            LLMFactoriesService.save(**info)
        except Exception as e:
            pass
    for info in llm_infos:
        try:
            LLMService.save(**info)
        except Exception as e:
            pass

    LLMFactoriesService.filter_delete([LLMFactories.name=="Local"])
    LLMService.filter_delete([LLM.fid=="Local"])

    """

    drop table llm;

    drop table llm_factories;

    update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One';

    alter table knowledgebase modify avatar longtext;

    alter table user modify avatar longtext;

    alter table dialog modify icon longtext;

    """


def init_web_data():
    start_time = time.time()

    init_llm_factory()
    if not UserService.get_all().count():
        init_superuser()

    print("init web data success:{}".format(time.time() - start_time))


if __name__ == '__main__':
    init_web_db()
    init_web_data()