|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os
|
|
from copy import deepcopy
|
|
|
|
import onnxruntime as ort
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from . import seeit
|
|
from .operators import *
|
|
from rag.settings import cron_logger
|
|
|
|
|
|
class Recognizer(object):
|
|
def __init__(self, label_list, task_name, model_dir=None):
|
|
"""
|
|
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
|
|
|
For Linux:
|
|
export HF_ENDPOINT=https://hf-mirror.com
|
|
|
|
For Windows:
|
|
Good luck
|
|
^_-
|
|
|
|
"""
|
|
if not model_dir:
|
|
model_dir = snapshot_download(repo_id="InfiniFlow/ocr")
|
|
|
|
model_file_path = os.path.join(model_dir, task_name + ".onnx")
|
|
if not os.path.exists(model_file_path):
|
|
raise ValueError("not find model file path {}".format(
|
|
model_file_path))
|
|
if ort.get_device() == "GPU":
|
|
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CUDAExecutionProvider'])
|
|
else:
|
|
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
|
|
self.label_list = label_list
|
|
|
|
@staticmethod
|
|
def sort_Y_firstly(arr, threashold):
|
|
|
|
arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
|
|
for i in range(len(arr) - 1):
|
|
for j in range(i, -1, -1):
|
|
|
|
if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
|
|
and arr[j + 1]["x0"] < arr[j]["x0"]:
|
|
tmp = deepcopy(arr[j])
|
|
arr[j] = deepcopy(arr[j + 1])
|
|
arr[j + 1] = deepcopy(tmp)
|
|
return arr
|
|
|
|
@staticmethod
|
|
def sort_X_firstly(arr, threashold, copy=True):
|
|
|
|
arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
|
|
for i in range(len(arr) - 1):
|
|
for j in range(i, -1, -1):
|
|
|
|
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
|
|
and arr[j + 1]["top"] < arr[j]["top"]:
|
|
tmp = deepcopy(arr[j]) if copy else arr[j]
|
|
arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
|
|
arr[j + 1] = deepcopy(tmp) if copy else tmp
|
|
return arr
|
|
|
|
@staticmethod
|
|
def sort_C_firstly(arr, thr=0):
|
|
|
|
|
|
arr = Recognizer.sort_X_firstly(arr, thr)
|
|
for i in range(len(arr) - 1):
|
|
for j in range(i, -1, -1):
|
|
|
|
if "C" not in arr[j] or "C" not in arr[j + 1]:
|
|
continue
|
|
if arr[j + 1]["C"] < arr[j]["C"] \
|
|
or (
|
|
arr[j + 1]["C"] == arr[j]["C"]
|
|
and arr[j + 1]["top"] < arr[j]["top"]
|
|
):
|
|
tmp = arr[j]
|
|
arr[j] = arr[j + 1]
|
|
arr[j + 1] = tmp
|
|
return arr
|
|
|
|
return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
|
|
|
|
@staticmethod
|
|
def sort_R_firstly(arr, thr=0):
|
|
|
|
|
|
arr = Recognizer.sort_Y_firstly(arr, thr)
|
|
for i in range(len(arr) - 1):
|
|
for j in range(i, -1, -1):
|
|
if "R" not in arr[j] or "R" not in arr[j + 1]:
|
|
continue
|
|
if arr[j + 1]["R"] < arr[j]["R"] \
|
|
or (
|
|
arr[j + 1]["R"] == arr[j]["R"]
|
|
and arr[j + 1]["x0"] < arr[j]["x0"]
|
|
):
|
|
tmp = arr[j]
|
|
arr[j] = arr[j + 1]
|
|
arr[j + 1] = tmp
|
|
return arr
|
|
|
|
@staticmethod
|
|
def overlapped_area(a, b, ratio=True):
|
|
tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
|
|
if b["x0"] > x1 or b["x1"] < x0:
|
|
return 0
|
|
if b["bottom"] < tp or b["top"] > btm:
|
|
return 0
|
|
x0_ = max(b["x0"], x0)
|
|
x1_ = min(b["x1"], x1)
|
|
assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
|
|
tp, btm, x0, x1, b)
|
|
tp_ = max(b["top"], tp)
|
|
btm_ = min(b["bottom"], btm)
|
|
assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
|
|
tp, btm, x0, x1, b)
|
|
ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
|
|
x0 != 0 and btm - tp != 0 else 0
|
|
if ov > 0 and ratio:
|
|
ov /= (x1 - x0) * (btm - tp)
|
|
return ov
|
|
|
|
@staticmethod
|
|
def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
|
|
def notOverlapped(a, b):
|
|
return any([a["x1"] < b["x0"],
|
|
a["x0"] > b["x1"],
|
|
a["bottom"] < b["top"],
|
|
a["top"] > b["bottom"]])
|
|
|
|
i = 0
|
|
while i + 1 < len(layouts):
|
|
j = i + 1
|
|
while j < min(i + far, len(layouts)) \
|
|
and (layouts[i].get("type", "") != layouts[j].get("type", "")
|
|
or notOverlapped(layouts[i], layouts[j])):
|
|
j += 1
|
|
if j >= min(i + far, len(layouts)):
|
|
i += 1
|
|
continue
|
|
if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
|
|
and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
|
|
i += 1
|
|
continue
|
|
|
|
if layouts[i].get("score") and layouts[j].get("score"):
|
|
if layouts[i]["score"] > layouts[j]["score"]:
|
|
layouts.pop(j)
|
|
else:
|
|
layouts.pop(i)
|
|
continue
|
|
|
|
area_i, area_i_1 = 0, 0
|
|
for b in boxes:
|
|
if not notOverlapped(b, layouts[i]):
|
|
area_i += Recognizer.overlapped_area(b, layouts[i], False)
|
|
if not notOverlapped(b, layouts[j]):
|
|
area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
|
|
|
|
if area_i > area_i_1:
|
|
layouts.pop(j)
|
|
else:
|
|
layouts.pop(i)
|
|
|
|
return layouts
|
|
|
|
def create_inputs(self, imgs, im_info):
|
|
"""generate input for different model type
|
|
Args:
|
|
imgs (list(numpy)): list of images (np.ndarray)
|
|
im_info (list(dict)): list of image info
|
|
Returns:
|
|
inputs (dict): input of model
|
|
"""
|
|
inputs = {}
|
|
|
|
im_shape = []
|
|
scale_factor = []
|
|
if len(imgs) == 1:
|
|
inputs['image'] = np.array((imgs[0],)).astype('float32')
|
|
inputs['im_shape'] = np.array(
|
|
(im_info[0]['im_shape'],)).astype('float32')
|
|
inputs['scale_factor'] = np.array(
|
|
(im_info[0]['scale_factor'],)).astype('float32')
|
|
return inputs
|
|
|
|
for e in im_info:
|
|
im_shape.append(np.array((e['im_shape'],)).astype('float32'))
|
|
scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
|
|
|
|
inputs['im_shape'] = np.concatenate(im_shape, axis=0)
|
|
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
|
|
|
|
imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
|
|
max_shape_h = max([e[0] for e in imgs_shape])
|
|
max_shape_w = max([e[1] for e in imgs_shape])
|
|
padding_imgs = []
|
|
for img in imgs:
|
|
im_c, im_h, im_w = img.shape[:]
|
|
padding_im = np.zeros(
|
|
(im_c, max_shape_h, max_shape_w), dtype=np.float32)
|
|
padding_im[:, :im_h, :im_w] = img
|
|
padding_imgs.append(padding_im)
|
|
inputs['image'] = np.stack(padding_imgs, axis=0)
|
|
return inputs
|
|
|
|
@staticmethod
|
|
def find_overlapped(box, boxes_sorted_by_y, naive=False):
|
|
if not boxes_sorted_by_y:
|
|
return
|
|
bxs = boxes_sorted_by_y
|
|
s, e, ii = 0, len(bxs), 0
|
|
while s < e and not naive:
|
|
ii = (e + s) // 2
|
|
pv = bxs[ii]
|
|
if box["bottom"] < pv["top"]:
|
|
e = ii
|
|
continue
|
|
if box["top"] > pv["bottom"]:
|
|
s = ii + 1
|
|
continue
|
|
break
|
|
while s < ii:
|
|
if box["top"] > bxs[s]["bottom"]:
|
|
s += 1
|
|
break
|
|
while e - 1 > ii:
|
|
if box["bottom"] < bxs[e - 1]["top"]:
|
|
e -= 1
|
|
break
|
|
|
|
max_overlaped_i, max_overlaped = None, 0
|
|
for i in range(s, e):
|
|
ov = Recognizer.overlapped_area(bxs[i], box)
|
|
if ov <= max_overlaped:
|
|
continue
|
|
max_overlaped_i = i
|
|
max_overlaped = ov
|
|
|
|
return max_overlaped_i
|
|
|
|
@staticmethod
|
|
def find_overlapped_with_threashold(box, boxes, thr=0.3):
|
|
if not boxes:
|
|
return
|
|
max_overlaped_i, max_overlaped, _max_overlaped = None, thr, 0
|
|
s, e = 0, len(boxes)
|
|
for i in range(s, e):
|
|
ov = Recognizer.overlapped_area(box, boxes[i])
|
|
_ov = Recognizer.overlapped_area(boxes[i], box)
|
|
if (ov, _ov) < (max_overlaped, _max_overlaped):
|
|
continue
|
|
max_overlaped_i = i
|
|
max_overlaped = ov
|
|
_max_overlaped = _ov
|
|
|
|
return max_overlaped_i
|
|
|
|
def preprocess(self, image_list):
|
|
preprocess_ops = []
|
|
for op_info in [
|
|
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
|
|
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
|
|
{'type': 'Permute'},
|
|
{'stride': 32, 'type': 'PadStride'}
|
|
]:
|
|
new_op_info = op_info.copy()
|
|
op_type = new_op_info.pop('type')
|
|
preprocess_ops.append(eval(op_type)(**new_op_info))
|
|
|
|
inputs = []
|
|
for im_path in image_list:
|
|
im, im_info = preprocess(im_path, preprocess_ops)
|
|
inputs.append({"image": np.array((im,)).astype('float32'), "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
|
|
return inputs
|
|
|
|
def __call__(self, image_list, thr=0.7, batch_size=16):
|
|
res = []
|
|
imgs = []
|
|
for i in range(len(image_list)):
|
|
if not isinstance(image_list[i], np.ndarray):
|
|
imgs.append(np.array(image_list[i]))
|
|
else: imgs.append(image_list[i])
|
|
|
|
batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
|
|
for i in range(batch_loop_cnt):
|
|
start_index = i * batch_size
|
|
end_index = min((i + 1) * batch_size, len(imgs))
|
|
batch_image_list = imgs[start_index:end_index]
|
|
inputs = self.preprocess(batch_image_list)
|
|
for ins in inputs:
|
|
bb = []
|
|
for b in self.ort_sess.run(None, ins)[0]:
|
|
clsid, bbox, score = int(b[0]), b[2:], b[1]
|
|
if score < thr:
|
|
continue
|
|
if clsid >= len(self.label_list):
|
|
cron_logger.warning(f"bad category id")
|
|
continue
|
|
bb.append({
|
|
"type": self.label_list[clsid].lower(),
|
|
"bbox": [float(t) for t in bbox.tolist()],
|
|
"score": float(score)
|
|
})
|
|
res.append(bb)
|
|
|
|
|
|
|
|
return res
|
|
|