DRAFT Python API Reference
THE API REFERENCES BELOW ARE STILL UNDER DEVELOPMENT.
:::tip NOTE Knowledgebase APIs :::
Create knowledge base
RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
language: str = "English",
permission: str = "me",
document_count: int = 0,
chunk_count: int = 0,
parse_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet
Creates a knowledge base (dataset).
Parameters
name: str
, Required
The unique name of the dataset to create. It must adhere to the following requirements:
- Permitted characters include:
- English letters (a-z, A-Z)
- Digits (0-9)
- "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.
avatar: str
Base64 encoding of the avatar. Defaults to ""
description
tenant_id: str
The id of the tenant associated with the created dataset is used to identify different users. Defaults to None
.
- If creating a dataset, tenant_id must not be provided.
- If updating a dataset, tenant_id can't be changed.
description: str
The description of the created dataset. Defaults to ""
.
language: str
The language setting of the created dataset. Defaults to "English"
. ????????????
permission
Specify who can operate on the dataset. Defaults to "me"
.
document_count: int
The number of documents associated with the dataset. Defaults to 0
.
chunk_count: int
The number of data chunks generated or processed by the created dataset. Defaults to 0
.
parse_method, str
The method used by the dataset to parse and process data. Defaults to "naive"
.
parser_config
The parser configuration of the dataset. A ParserConfig
object contains the following attributes:
chunk_token_count
: Defaults to128
.layout_recognize
: Defaults toTrue
.delimiter
: Defaults to'\n!?。;!?'
.task_page_size
: Defaults to12
.
Returns
- Success: A
dataset
object. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag_object.create_dataset(name="kb_1")
Delete knowledge bases
RAGFlow.delete_datasets(ids: list[str] = None)
Deletes knowledge bases by name or ID.
Parameters
ids
The IDs of the knowledge bases to delete.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag.delete_datasets(ids=["id_1","id_2"])
List knowledge bases
RAGFlow.list_datasets(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[DataSet]
Retrieves a list of knowledge bases.
Parameters
page: int
The current page number to retrieve from the paginated results. Defaults to 1
.
page_size: int
The number of records on each page. Defaults to 1024
.
order_by: str
The field by which the records should be sorted. This specifies the attribute or column used to order the results. Defaults to "create_time"
.
desc: bool
Whether the sorting should be in descending order. Defaults to True
.
id: str
The id of the dataset to be got. Defaults to None
.
name: str
The name of the dataset to be got. Defaults to None
.
Returns
- Success: A list of
DataSet
objects representing the retrieved knowledge bases. - Failure:
Exception
.
Examples
List all knowledge bases
for ds in rag_object.list_datasets():
print(ds)
Retrieve a knowledge base by ID
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
Update knowledge base
DataSet.update(update_message: dict)
Updates the current knowledge base.
Parameters
update_message: dict[str, str|int]
, Required
"name"
:str
The name of the knowledge base to update."tenant_id"
:str
The"tenant_id
you get after callingcreate_dataset()
."embedding_model"
:str
The embedding model for generating vector embeddings.- Ensure that
"chunk_count"
is0
before updating"embedding_model"
.
- Ensure that
"parser_method"
:str
"naive"
: General"manual
: Manual"qa"
: Q&A"table"
: Table"paper"
: Paper"book"
: Book"laws"
: Laws"presentation"
: Presentation"picture"
: Picture"one"
:One"knowledge_graph"
: Knowledge Graph"email"
: Email
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(name="kb_1")
ds.update({"embedding_model":"BAAI/bge-zh-v1.5", "parse_method":"manual"})
:::tip API GROUPING File management inside knowledge base :::
Upload document
DataSet.upload_documents(document_list: list[dict])
Parameters
document_list:list[dict]
A list composed of dicts containing name
and blob
.
Returns
no return
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.create_dataset(name="kb_1")
ds.upload_documents([{name="1.txt", blob="123"}, ...] }
Update document
Document.update(update_message:dict)
Parameters
update_message:dict
only name
,parser_config
,parser_method
can be changed
Returns
no return
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds=rag.list_datasets(id='id')
ds=ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_method": "manual"...}])
Download document
Document.download() -> bytes
Returns
bytes of the document.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds=rag.list_datasets(id="id")
ds=ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
List documents
Dataset.list_documents(id:str =None, keywords: str=None, offset: int=0, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> list[Document]
Parameters
id: str
The id of the document to be got
keywords: str
List documents whose name has the given keywords. Defaults to None
.
offset: int
The beginning number of records for paging. Defaults to 0
.
limit: int
Records number to return, -1 means all of them. Records number to return, -1 means all of them.
orderby: str
The field by which the records should be sorted. This specifies the attribute or column used to order the results.
desc:bool
A boolean flag indicating whether the sorting should be in descending order.
Returns
list[Document]
A document object containing the following attributes:
id: str
Id of the retrieved document. Defaults to ""
.
thumbnail: str
Thumbnail image of the retrieved document. Defaults to ""
.
knowledgebase_id: str
Knowledge base ID related to the document. Defaults to ""
.
parser_method: str
Method used to parse the document. Defaults to ""
.
parser_config: ParserConfig
Configuration object for the parser. Defaults to None
.
source_type: str
Source type of the document. Defaults to ""
.
type: str
Type or category of the document. Defaults to ""
.
created_by: str
Creator of the document. Defaults to ""
.
name: str
string
''
Name or title of the document. Defaults to ""
.
size: int
Size of the document in bytes or some other unit. Defaults to 0
.
token_count: int
Number of tokens in the document. Defaults to ""
.
chunk_count: int
Number of chunks the document is split into. Defaults to 0
.
progress: float
Current processing progress as a percentage. Defaults to 0.0
.
progress_msg: str
Message indicating current progress status. Defaults to ""
.
process_begin_at: datetime
Start time of the document processing. Defaults to None
.
process_duation: float
Duration of the processing in seconds or minutes. Defaults to 0.0
.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
blob=open(filename1 , "rb").read()
list_files=[{"name":filename1,"blob":blob}]
ds.upload_documents(list_files)
for d in ds.list_documents(keywords="rag", offset=0, limit=12):
print(d)
Delete documents
DataSet.delete_documents(ids: list[str] = None)
Returns
no return
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(name="kb_1")
ds = ds[0]
ds.delete_documents(ids=["id_1","id_2"])
Parse and stop parsing document
DataSet.async_parse_documents(document_ids:list[str]) -> None
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
Parameters
document_ids:list[str]
The ids of the documents to be parsed ????????????????????????????????????????????????????
Returns
no return ????????????????????????????????????????????????????
Examples
#documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="God5")
documents = [
{'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
ds.upload_documents(documents)
documents=ds.list_documents(keywords="test")
ids=[]
for document in documents:
ids.append(document.id)
ds.async_parse_documents(ids)
print("Async bulk parsing initiated")
ds.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled")
List chunks
Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> list[Chunk]
Parameters
keywords
:str
List chunks whose name has the given keywords
default:None
offset
:int
The beginning number of records for paging
default:1
limit
:int
Records number to return
default:30
id
:str
The ID of the chunk to be retrieved
default:None
Returns
list[chunk]
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets("123")
ds = ds[0]
ds.async_parse_documents(["wdfxb5t547d"])
for c in doc.list_chunks(keywords="rag", offset=0, limit=12):
print(c)
Add chunk
Document.add_chunk(content:str) -> Chunk
Parameters
content: str
, Required
Contains the main text or information of the chunk.
important_keywords :list[str]
list the key terms or phrases that are significant or central to the chunk's content.
Returns
chunk
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
Delete chunk
Document.delete_chunks(chunk_ids: list[str])
Parameters
chunk_ids:list[str]
The list of chunk_id
Returns
no return
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])
Update chunk
Chunk.update(update_message: dict)
Parameters
content
:str
Contains the main text or information of the chunkimportant_keywords
:list[str]
List the key terms or phrases that are significant or central to the chunk's contentavailable
:int
Indicating the availability status,0
means unavailable and1
means available
Returns
no return
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx...})
Retrieval
RAGFlow.retrieve(question:str="", datasets:list[str]=None, document=list[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
Parameters
question: str
, Required
The user query or query keywords. Defaults to ""
.
datasets: list[Dataset]
, Required
The scope of datasets.
document: list[Document]
The scope of document. None
means no limitation. Defaults to None
.
offset: int
The beginning point of retrieved records. Defaults to 0
.
limit: int
The maximum number of records needed to return. Defaults to 6
.
Similarity_threshold: float
The minimum similarity score. Defaults to 0.2
.
similarity_threshold_weight: float
The weight of vector cosine similarity, 1 - x is the term similarity weight. Defaults to 0.3
.
top_k: int
Number of records engaged in vector cosine computaton. Defaults to 1024
.
rerank_id:str
ID of the rerank model. Defaults to None
.
keyword:bool
Indicating whether keyword-based matching is enabled (True) or disabled (False).
highlight:bool
Specifying whether to enable highlighting of matched terms in the results (True) or not (False).
Returns
list[Chunk]
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(name="ragflow")
ds = ds[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag.create_document(ds, name=name, blob=open(path, "rb").read())
doc = ds.list_documents(name=name)
doc = doc[0]
ds.async_parse_documents([doc.id])
for c in rag.retrieve(question="What's ragflow?",
datasets=[ds.id], documents=[doc.id],
offset=1, limit=30, similarity_threshold=0.2,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)
:::tip API GROUPING Chat APIs :::
Create chat assistant
RAGFlow.create_chat(
name: str = "assistant",
avatar: str = "path",
knowledgebases: list[DataSet] = [],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat
Creates a chat assistant.
Returns
- Success: A
Chat
object representing the chat assistant. - Failure:
Exception
name: str
The name of the chat assistant. Defaults to "assistant"
.
avatar: str
Base64 encoding of the avatar. Defaults to ""
.
knowledgebases: list[str]
The associated knowledge bases. Defaults to ["kb1"]
.
llm: LLM
The llm of the created chat. Defaults to None
. When the value is None
, a dictionary with the following values will be generated as the default.
- model_name,
str
The chat model name. If it isNone
, the user's default chat model will be returned. - temperature,
float
Controls the randomness of the model's predictions. A lower temperature increases the model's conficence in its responses; a higher temperature increases creativity and diversity. Defaults to0.1
. - top_p,
float
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to0.3
- presence_penalty,
float
This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to0.2
. - frequency penalty,
float
Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to0.7
. - max_token,
int
This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to512
.
Prompt: str
Instructions for the LLM to follow.
"similarity_threshold"
:float
A similarity score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to0.2
."keywords_similarity_weight"
:float
It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to0.7
."top_n"
:int
Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to8
."variables"
:list[dict[]]
If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to[{"key": "knowledge", "optional": True}]
"rerank_model"
:str
If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to""
."empty_response"
:str
If nothing is retrieved in the knowledge base for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults toNone
."opener"
:str
The opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"
."show_quote
:bool
Indicates whether the source of text should be displayed Defaults toTrue
."prompt"
:str
The prompt content. Defaults toYou are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base.
.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
knowledge_base = rag.list_datasets(name="kb_1")
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
Update chat
Chat.update(update_message: dict)
Updates the current chat assistant.
Parameters
update_message: dict[str, Any]
, Required
"name"
:str
The name of the chat assistant to update."avatar"
:str
Base64 encoding of the avatar. Defaults to""
"knowledgebases"
:list[str]
Knowledge bases to update."llm"
:dict
The LLM settings:"model_name"
,str
The chat model name."temperature"
,float
Controls the randomness of the model's predictions."top_p"
,float
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from."presence_penalty"
,float
This discourages the model from repeating the same information by penalizing words that have appeared in the conversation."frequency penalty"
,float
Similar to presence penalty, this reduces the model’s tendency to repeat the same words."max_token"
,int
This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
"prompt"
: Instructions for the LLM to follow."similarity_threshold"
:float
A score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to0.2
."keywords_similarity_weight"
:float
It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to0.7
."top_n"
:int
Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to8
."variables"
:list[dict[]]
If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to[{"key": "knowledge", "optional": True}]
"rerank_model"
:str
If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to""
."empty_response"
:str
If nothing is retrieved in the knowledge base for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults toNone
."opener"
:str
The opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"
."show_quote
:bool
Indicates whether the source of text should be displayed Defaults toTrue
."prompt"
:str
The prompt content. Defaults toYou are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base.
.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
knowledge_base = rag.list_datasets(name="kb_1")
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
Delete chats
Deletes specified chat assistants.
RAGFlow.delete_chats(ids: list[str] = None)
Parameters
ids
IDs of the chat assistants to delete. If not specified, all chat assistants will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag.delete_chats(ids=["id_1","id_2"])
List chats
RAGFlow.list_chats(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Chat]
Parameters
page
Specifies the page on which the records will be displayed. Defaults to 1
.
page_size
The number of records on each page. Defaults to 1024
.
order_by
The attribute by which the results are sorted. Defaults to "create_time"
.
desc
Indicates whether to sort the results in descending order. Defaults to True
.
id: string
The ID of the chat to retrieve. Defaults to None
.
name: string
The name of the chat to retrieve. Defaults to None
.
Returns
- Success: A list of
Chat
objects. - Failure:
Exception
.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag.list_chats():
print(assistant)
:::tip API GROUPING Chat-session APIs :::
Create session
Chat.create_session(name: str = "New session") -> Session
Creates a chat session.
Parameters
name
The name of the chat session to create.
Returns
- Success: A
Session
object containing the following attributes:id
:str
The auto-generated unique identifier of the created session.name
:str
The name of the created session.message
:list[Message]
The messages of the created session assistant. Default:[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
chat_id
:str
The ID of the associated chat assistant.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
Update session
Session.update(update_message: dict)
Updates the current session.
Parameters
update_message: dict[str, Any]
, Required
"name"
:str
The name of the session to update.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
Chat
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
Parameters
question Required
The question to start an AI chat. Defaults to None
.
stream
Indicates whether to output responses in a streaming way. Defaults to False
.
Returns
Optional[Message, iter[Message]]
- Message object, if
stream
is set toFalse
- iter[Message] object, if
stream
is set toTrue
id: str
The ID of the message. id
is automatically generated.
content: str
The content of the message. Defaults to "Hi! I am your assistant, can I help you?"
.
reference: list[Chunk]
The auto-generated reference of the message. Each chunk
object includes the following attributes:
- id:
str
The id of the chunk. - content:
str
The content of the chunk. - document_id:
str
The ID of the document being referenced. - document_name:
str
The name of the referenced document being referenced. - knowledgebase_id:
str
The id of the knowledge base to which the relevant document belongs. - image_id:
str
The id of the image related to the chunk. - similarity:
float
A general similarity score, usually a composite score derived from various similarity measures . This score represents the degree of similarity between two objects. The value ranges between 0 and 1, where a value closer to 1 indicates higher similarity. - vector_similarity:
float
A similarity score based on vector representations. This score is obtained by converting texts, words, or objects into vectors and then calculating the cosine similarity or other distance measures between these vectors to determine the similarity in vector space. A higher value indicates greater similarity in the vector space. - term_similarity:
float
The similarity score based on terms or keywords. This score is calculated by comparing the similarity of key terms between texts or datasets, typically measuring how similar two words or phrases are in meaning or context. A higher value indicates a stronger similarity between terms. - position:
list[string]
Indicates the position or index of keywords or specific terms within the text. An array is typically used to mark the location of keywords or specific elements, facilitating precise operations or analysis of the text.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
sess = assistant.create_session()
print("\n==================== Miss R =====================\n")
print(assistant.get_prologue())
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in sess.ask(question, stream=True):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content
List sessions
Chat.list_sessions(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Session]
Lists sessions associated with the current chat assistant.
Parameters
page
Specifies the page on which records will be displayed. Defaults to 1
.
page_size
The number of records on each page. Defaults to 1024
.
orderby
The field by which the records should be sorted. This specifies the attribute or column used to sort the results. Defaults to "create_time"
.
desc
Whether the sorting should be in descending order. Defaults to True
.
id
The ID of the chat session to retrieve. Defaults to None
.
name
The name of the chat to retrieve. Defaults to None
.
Returns
- Success: A list of
Session
objects associated with the current chat assistant. - Failure:
Exception
.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
print(session)
Delete sessions
Chat.delete_sessions(ids:list[str] = None)
Deletes specified sessions or all sessions associated with the current chat assistant.
Parameters
ids
IDs of the sessions to delete. If not specified, all sessions associated with the current chat assistant will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])