Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
import tempfile
|
| 5 |
-
from fastapi import FastAPI, HTTPException,
|
| 6 |
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
from pydantic import BaseModel
|
| 8 |
from langchain_community.vectorstores import FAISS
|
|
@@ -10,22 +9,30 @@ from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint
|
|
| 10 |
from langchain.chains import RetrievalQA
|
| 11 |
from langchain_core.prompts import PromptTemplate
|
| 12 |
from langchain_community.document_loaders import PyPDFLoader
|
| 13 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
from collections import OrderedDict
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Retrieve HF_TOKEN from environment
|
| 17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 18 |
|
| 19 |
# Constants
|
| 20 |
-
|
| 21 |
DB_FAISS_PATH = "/tmp/vectorstore/db_faiss"
|
| 22 |
-
USER_REPORT_DB_PATH = "/tmp/vectorstore/user_report_db"
|
| 23 |
HUGGINGFACE_REPO_ID = "microsoft/Phi-3-mini-4k-instruct"
|
|
|
|
| 24 |
|
| 25 |
-
# Create directories
|
|
|
|
| 26 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 27 |
os.makedirs(os.path.dirname(DB_FAISS_PATH), exist_ok=True)
|
| 28 |
-
os.makedirs(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Initialize FastAPI app
|
| 31 |
app = FastAPI()
|
|
@@ -39,15 +46,28 @@ app.add_middleware(
|
|
| 39 |
allow_headers=["*"],
|
| 40 |
)
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# Load LLM
|
| 53 |
def load_llm():
|
|
@@ -58,66 +78,97 @@ def load_llm():
|
|
| 58 |
model_kwargs={"token": HF_TOKEN, "max_length": 512}
|
| 59 |
)
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
# Function to
|
| 78 |
-
def
|
| 79 |
try:
|
| 80 |
-
# Download the PDF from the URL
|
| 81 |
-
response = requests.get(pdf_url)
|
| 82 |
-
response.raise_for_status() # Raise exception for bad status codes
|
| 83 |
-
|
| 84 |
-
# Create a temporary file to save the PDF
|
| 85 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_pdf:
|
| 86 |
-
temp_pdf.write(response.content)
|
| 87 |
-
temp_path = temp_pdf.name
|
| 88 |
-
|
| 89 |
# Load the PDF
|
| 90 |
-
loader = PyPDFLoader(
|
| 91 |
documents = loader.load()
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
chunk_size=1000,
|
| 96 |
-
chunk_overlap=200
|
| 97 |
-
)
|
| 98 |
-
text_chunks = text_splitter.split_documents(documents)
|
| 99 |
-
|
| 100 |
-
# Create vector database from the text chunks
|
| 101 |
-
db = FAISS.from_documents(text_chunks, embedding_model)
|
| 102 |
-
db.save_local(USER_REPORT_DB_PATH)
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
|
|
|
|
| 106 |
|
| 107 |
-
return True
|
| 108 |
|
| 109 |
except Exception as e:
|
| 110 |
print(f"Error processing PDF: {str(e)}")
|
| 111 |
-
return False
|
| 112 |
|
| 113 |
-
#
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
return RetrievalQA.from_chain_type(
|
| 123 |
llm=load_llm(),
|
|
@@ -127,48 +178,57 @@ def create_user_report_qa_chain():
|
|
| 127 |
chain_type_kwargs={'prompt': prompt}
|
| 128 |
)
|
| 129 |
|
| 130 |
-
|
| 131 |
-
class ReportURL(BaseModel):
|
| 132 |
-
url: str
|
| 133 |
|
|
|
|
| 134 |
class Question(BaseModel):
|
| 135 |
query: str
|
| 136 |
|
| 137 |
-
#
|
| 138 |
-
@app.post("/api/
|
| 139 |
-
async def
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
# Process the PDF
|
| 143 |
-
success =
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
if success:
|
| 146 |
-
user_report_processed = True
|
| 147 |
-
user_report_db = create_user_report_qa_chain()
|
| 148 |
return {
|
| 149 |
"status": "success",
|
| 150 |
"message": "Medical report data extracted successfully",
|
| 151 |
-
"processed": True
|
|
|
|
| 152 |
}
|
| 153 |
else:
|
| 154 |
-
user_report_processed = False
|
| 155 |
return {
|
| 156 |
"status": "error",
|
| 157 |
-
"message": "Failed to process the medical report",
|
| 158 |
"processed": False
|
| 159 |
}
|
| 160 |
|
| 161 |
# API endpoint to ask questions about the processed report
|
| 162 |
@app.post("/api/ask-question")
|
| 163 |
async def ask_question(question_data: Question):
|
| 164 |
-
global
|
| 165 |
|
| 166 |
-
if
|
| 167 |
raise HTTPException(status_code=400, detail="No medical report has been processed yet")
|
| 168 |
|
| 169 |
try:
|
| 170 |
-
#
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
# Get the raw result
|
| 174 |
result = response["result"]
|
|
@@ -181,79 +241,155 @@ async def ask_question(question_data: Question):
|
|
| 181 |
# Rejoin with periods
|
| 182 |
cleaned_result = '. '.join(unique_sentences) + '.' if unique_sentences else ""
|
| 183 |
|
|
|
|
|
|
|
|
|
|
| 184 |
return {"answer": cleaned_result}
|
| 185 |
|
| 186 |
except Exception as e:
|
| 187 |
raise HTTPException(status_code=500, detail=f"Error processing question: {str(e)}")
|
| 188 |
|
| 189 |
-
# Gradio Interface
|
| 190 |
-
|
| 191 |
-
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
-
with gr.Column():
|
| 195 |
-
pdf_url_input = gr.Textbox(label="Enter PDF Report URL")
|
| 196 |
-
process_button = gr.Button("Analyze Report")
|
| 197 |
-
status_text = gr.Textbox(label="Status", interactive=False)
|
| 198 |
-
|
| 199 |
-
with gr.Row():
|
| 200 |
-
with gr.Column():
|
| 201 |
-
query_input = gr.Textbox(label="Ask a question about your report")
|
| 202 |
-
query_button = gr.Button("Submit Question")
|
| 203 |
-
answer_output = gr.Textbox(label="Answer", interactive=False)
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
def ask_question_gradio(query):
|
| 222 |
-
global user_report_db, user_report_processed
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
| 251 |
)
|
| 252 |
|
| 253 |
-
|
| 254 |
fn=ask_question_gradio,
|
| 255 |
-
inputs=
|
| 256 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
)
|
| 258 |
|
| 259 |
# Mount the Gradio app to FastAPI
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import tempfile
|
| 4 |
+
from fastapi import FastAPI, HTTPException, File, UploadFile
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 9 |
from langchain.chains import RetrievalQA
|
| 10 |
from langchain_core.prompts import PromptTemplate
|
| 11 |
from langchain_community.document_loaders import PyPDFLoader
|
|
|
|
| 12 |
from collections import OrderedDict
|
| 13 |
+
import re
|
| 14 |
+
import shutil
|
| 15 |
|
| 16 |
# Retrieve HF_TOKEN from environment
|
| 17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 18 |
|
| 19 |
# Constants
|
| 20 |
+
DATA_PATH = "dataFolder/"
|
| 21 |
DB_FAISS_PATH = "/tmp/vectorstore/db_faiss"
|
|
|
|
| 22 |
HUGGINGFACE_REPO_ID = "microsoft/Phi-3-mini-4k-instruct"
|
| 23 |
+
UPLOAD_DIR = "/tmp/uploads/"
|
| 24 |
|
| 25 |
+
# Create necessary directories
|
| 26 |
+
CACHE_DIR = "/tmp/models_cache"
|
| 27 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 28 |
os.makedirs(os.path.dirname(DB_FAISS_PATH), exist_ok=True)
|
| 29 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 30 |
+
|
| 31 |
+
# Load the embedding model
|
| 32 |
+
embedding_model = HuggingFaceEmbeddings(
|
| 33 |
+
model_name="rishi002/all-MiniLM-L6-v2",
|
| 34 |
+
cache_folder=CACHE_DIR
|
| 35 |
+
)
|
| 36 |
|
| 37 |
# Initialize FastAPI app
|
| 38 |
app = FastAPI()
|
|
|
|
| 46 |
allow_headers=["*"],
|
| 47 |
)
|
| 48 |
|
| 49 |
+
# Global variables to track user report data and conversation history
|
| 50 |
+
user_report_data = None
|
| 51 |
+
conversation_history = []
|
| 52 |
+
|
| 53 |
+
# Load or create FAISS database from knowledge base PDFs
|
| 54 |
+
def load_or_create_faiss():
|
| 55 |
+
if not os.path.exists(DB_FAISS_PATH):
|
| 56 |
+
print("🔄 Creating FAISS Database...")
|
| 57 |
+
from embeddings import load_pdf_files, create_chunks # Import functions from embeddings.py
|
| 58 |
|
| 59 |
+
documents = load_pdf_files(DATA_PATH) # Load PDFs
|
| 60 |
+
text_chunks = create_chunks(documents) # Split into Chunks
|
| 61 |
+
|
| 62 |
+
db = FAISS.from_documents(text_chunks, embedding_model)
|
| 63 |
+
db.save_local(DB_FAISS_PATH)
|
| 64 |
+
else:
|
| 65 |
+
print("✅ FAISS Database Exists. Loading...")
|
| 66 |
+
|
| 67 |
+
return FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True)
|
| 68 |
+
|
| 69 |
+
# Load the knowledge base
|
| 70 |
+
db = load_or_create_faiss()
|
| 71 |
|
| 72 |
# Load LLM
|
| 73 |
def load_llm():
|
|
|
|
| 78 |
model_kwargs={"token": HF_TOKEN, "max_length": 512}
|
| 79 |
)
|
| 80 |
|
| 81 |
+
# Function to extract medical parameters from PDF text
|
| 82 |
+
def extract_medical_parameters(text):
|
| 83 |
+
# This is a simplified extraction function
|
| 84 |
+
# In a real-world scenario, you'd want more sophisticated extraction logic
|
| 85 |
+
parameters = {}
|
| 86 |
+
|
| 87 |
+
# Look for common medical parameters with regex
|
| 88 |
+
# Blood pressure: systolic/diastolic
|
| 89 |
+
bp_match = re.search(r'blood pressure[:\s]*([\d]+)[\s\/]*([\d]+)', text, re.IGNORECASE)
|
| 90 |
+
if bp_match:
|
| 91 |
+
parameters['blood_pressure'] = f"{bp_match.group(1)}/{bp_match.group(2)}"
|
| 92 |
+
|
| 93 |
+
# Heart rate
|
| 94 |
+
hr_match = re.search(r'heart rate[:\s]*([\d]+)', text, re.IGNORECASE)
|
| 95 |
+
if hr_match:
|
| 96 |
+
parameters['heart_rate'] = hr_match.group(1)
|
| 97 |
+
|
| 98 |
+
# Blood glucose
|
| 99 |
+
glucose_match = re.search(r'glucose[:\s]*([\d\.]+)', text, re.IGNORECASE)
|
| 100 |
+
if glucose_match:
|
| 101 |
+
parameters['glucose'] = glucose_match.group(1)
|
| 102 |
+
|
| 103 |
+
# Hemoglobin
|
| 104 |
+
hb_match = re.search(r'h(?:a|e)moglobin[:\s]*([\d\.]+)', text, re.IGNORECASE)
|
| 105 |
+
if hb_match:
|
| 106 |
+
parameters['hemoglobin'] = hb_match.group(1)
|
| 107 |
+
|
| 108 |
+
# White blood cell count
|
| 109 |
+
wbc_match = re.search(r'white blood cell[s]?[:\s]*([\d\.]+)', text, re.IGNORECASE)
|
| 110 |
+
if wbc_match:
|
| 111 |
+
parameters['wbc_count'] = wbc_match.group(1)
|
| 112 |
+
|
| 113 |
+
# Cholesterol
|
| 114 |
+
cholesterol_match = re.search(r'cholesterol[:\s]*([\d\.]+)', text, re.IGNORECASE)
|
| 115 |
+
if cholesterol_match:
|
| 116 |
+
parameters['cholesterol'] = cholesterol_match.group(1)
|
| 117 |
+
|
| 118 |
+
# Add more parameter extraction as needed
|
| 119 |
+
|
| 120 |
+
# If no specific parameters were found, store the whole text for context
|
| 121 |
+
if not parameters:
|
| 122 |
+
# Simplify by taking first 1000 chars if text is too long
|
| 123 |
+
parameters['report_summary'] = text[:1000] if len(text) > 1000 else text
|
| 124 |
+
|
| 125 |
+
return parameters
|
| 126 |
|
| 127 |
+
# Function to process uploaded PDF file
|
| 128 |
+
def process_pdf_file(file_path):
|
| 129 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
# Load the PDF
|
| 131 |
+
loader = PyPDFLoader(file_path)
|
| 132 |
documents = loader.load()
|
| 133 |
|
| 134 |
+
# Extract text from all pages
|
| 135 |
+
all_text = " ".join([doc.page_content for doc in documents])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
# Extract medical parameters from the text
|
| 138 |
+
global user_report_data
|
| 139 |
+
user_report_data = extract_medical_parameters(all_text)
|
| 140 |
|
| 141 |
+
return True, user_report_data
|
| 142 |
|
| 143 |
except Exception as e:
|
| 144 |
print(f"Error processing PDF: {str(e)}")
|
| 145 |
+
return False, str(e)
|
| 146 |
|
| 147 |
+
# Custom prompt template that includes medical parameters
|
| 148 |
+
MEDICAL_REPORT_PROMPT = """
|
| 149 |
+
Use the following information to answer the user's question about their medical report.
|
| 150 |
+
If you don't know the answer, just say that you don't know. Don't make up an answer.
|
| 151 |
+
Keep your answer concise and avoid repeating the same information.
|
| 152 |
+
Explain medical terms in a way that's easy for patients to understand.
|
| 153 |
+
Do not mention the source of information in your answer.
|
| 154 |
+
|
| 155 |
+
User's Medical Parameters:
|
| 156 |
+
{parameters}
|
| 157 |
+
|
| 158 |
+
Knowledge Base Context:
|
| 159 |
+
{context}
|
| 160 |
+
|
| 161 |
+
Question: {question}
|
| 162 |
+
|
| 163 |
+
Start the answer directly.
|
| 164 |
+
"""
|
| 165 |
+
|
| 166 |
+
# Create the QA chain
|
| 167 |
+
def create_qa_chain():
|
| 168 |
+
prompt = PromptTemplate(
|
| 169 |
+
template=MEDICAL_REPORT_PROMPT,
|
| 170 |
+
input_variables=["parameters", "context", "question"]
|
| 171 |
+
)
|
| 172 |
|
| 173 |
return RetrievalQA.from_chain_type(
|
| 174 |
llm=load_llm(),
|
|
|
|
| 178 |
chain_type_kwargs={'prompt': prompt}
|
| 179 |
)
|
| 180 |
|
| 181 |
+
qa_chain = create_qa_chain()
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
# API Models
|
| 184 |
class Question(BaseModel):
|
| 185 |
query: str
|
| 186 |
|
| 187 |
+
# API endpoint to process an uploaded PDF file
|
| 188 |
+
@app.post("/api/upload-report")
|
| 189 |
+
async def upload_report(file: UploadFile = File(...)):
|
| 190 |
+
# Save the uploaded file
|
| 191 |
+
file_path = os.path.join(UPLOAD_DIR, file.filename)
|
| 192 |
+
with open(file_path, "wb") as buffer:
|
| 193 |
+
shutil.copyfileobj(file.file, buffer)
|
| 194 |
|
| 195 |
+
# Process the PDF file
|
| 196 |
+
success, data = process_pdf_file(file_path)
|
| 197 |
+
|
| 198 |
+
# Clean up the file
|
| 199 |
+
os.remove(file_path)
|
| 200 |
|
| 201 |
if success:
|
|
|
|
|
|
|
| 202 |
return {
|
| 203 |
"status": "success",
|
| 204 |
"message": "Medical report data extracted successfully",
|
| 205 |
+
"processed": True,
|
| 206 |
+
"parameters_found": len(data) > 0
|
| 207 |
}
|
| 208 |
else:
|
|
|
|
| 209 |
return {
|
| 210 |
"status": "error",
|
| 211 |
+
"message": f"Failed to process the medical report: {data}",
|
| 212 |
"processed": False
|
| 213 |
}
|
| 214 |
|
| 215 |
# API endpoint to ask questions about the processed report
|
| 216 |
@app.post("/api/ask-question")
|
| 217 |
async def ask_question(question_data: Question):
|
| 218 |
+
global user_report_data, conversation_history
|
| 219 |
|
| 220 |
+
if user_report_data is None:
|
| 221 |
raise HTTPException(status_code=400, detail="No medical report has been processed yet")
|
| 222 |
|
| 223 |
try:
|
| 224 |
+
# Format the parameters for the prompt
|
| 225 |
+
parameters_text = "\n".join([f"{k.replace('_', ' ').title()}: {v}" for k, v in user_report_data.items()])
|
| 226 |
+
|
| 227 |
+
# Get answer from the QA chain with user parameters included
|
| 228 |
+
response = qa_chain.invoke({
|
| 229 |
+
'query': question_data.query,
|
| 230 |
+
'parameters': parameters_text
|
| 231 |
+
})
|
| 232 |
|
| 233 |
# Get the raw result
|
| 234 |
result = response["result"]
|
|
|
|
| 241 |
# Rejoin with periods
|
| 242 |
cleaned_result = '. '.join(unique_sentences) + '.' if unique_sentences else ""
|
| 243 |
|
| 244 |
+
# Add to conversation history
|
| 245 |
+
conversation_history.append({"user": question_data.query, "bot": cleaned_result})
|
| 246 |
+
|
| 247 |
return {"answer": cleaned_result}
|
| 248 |
|
| 249 |
except Exception as e:
|
| 250 |
raise HTTPException(status_code=500, detail=f"Error processing question: {str(e)}")
|
| 251 |
|
| 252 |
+
# Gradio Interface Components
|
| 253 |
+
def process_file_upload(file):
|
| 254 |
+
if file is None:
|
| 255 |
+
return None, "Please upload a PDF file", []
|
| 256 |
|
| 257 |
+
success, data = process_pdf_file(file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
if success:
|
| 260 |
+
parameters = [f"**{k.replace('_', ' ').title()}**: {v}" for k, v in data.items()]
|
| 261 |
+
parameters_markdown = "\n".join(parameters)
|
| 262 |
|
| 263 |
+
return file.name, f"✅ Report processed successfully!\n\n### Extracted Parameters:\n{parameters_markdown}", []
|
| 264 |
+
else:
|
| 265 |
+
return None, f"❌ Failed to process report: {data}", []
|
| 266 |
+
|
| 267 |
+
def ask_question_gradio(question, history):
|
| 268 |
+
global user_report_data, conversation_history
|
| 269 |
+
|
| 270 |
+
if user_report_data is None:
|
| 271 |
+
history.append((question, "No medical report has been processed yet. Please upload a report first."))
|
| 272 |
+
return "", history
|
| 273 |
+
|
| 274 |
+
try:
|
| 275 |
+
# Format the parameters for the prompt
|
| 276 |
+
parameters_text = "\n".join([f"{k.replace('_', ' ').title()}: {v}" for k, v in user_report_data.items()])
|
| 277 |
|
| 278 |
+
# Get answer from the QA chain with user parameters included
|
| 279 |
+
response = qa_chain.invoke({
|
| 280 |
+
'query': question,
|
| 281 |
+
'parameters': parameters_text
|
| 282 |
+
})
|
| 283 |
|
| 284 |
+
# Get the raw result
|
| 285 |
+
result = response["result"]
|
| 286 |
+
|
| 287 |
+
# Remove duplicates by splitting into sentences and keeping only unique ones
|
| 288 |
+
sentences = [s.strip() for s in result.split('.') if s.strip()]
|
| 289 |
+
# Use OrderedDict to preserve order while removing duplicates
|
| 290 |
+
unique_sentences = list(OrderedDict.fromkeys(sentences))
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
+
# Rejoin with periods
|
| 293 |
+
cleaned_result = '. '.join(unique_sentences) + '.' if unique_sentences else ""
|
| 294 |
|
| 295 |
+
history.append((question, cleaned_result))
|
| 296 |
+
return "", history
|
| 297 |
+
|
| 298 |
+
except Exception as e:
|
| 299 |
+
history.append((question, f"Error: {str(e)}"))
|
| 300 |
+
return "", history
|
| 301 |
+
|
| 302 |
+
def clear_conversation():
|
| 303 |
+
return [], None, "Upload your medical report PDF to get started", []
|
| 304 |
+
|
| 305 |
+
# Improved Gradio Interface
|
| 306 |
+
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
| 307 |
+
gr.Markdown(
|
| 308 |
+
"""
|
| 309 |
+
# 🏥 Medical Report Analyzer
|
| 310 |
+
|
| 311 |
+
Upload your medical report and ask questions to understand it better.
|
| 312 |
+
Our AI assistant will help explain your results in plain language.
|
| 313 |
+
"""
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
with gr.Row():
|
| 317 |
+
with gr.Column(scale=1):
|
| 318 |
+
with gr.Box():
|
| 319 |
+
gr.Markdown("### 1️⃣ Upload Your Report")
|
| 320 |
+
|
| 321 |
+
file_upload = gr.File(
|
| 322 |
+
file_types=[".pdf"],
|
| 323 |
+
label="Upload Medical Report (PDF)",
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
uploaded_file = gr.Textbox(
|
| 327 |
+
label="Current Report",
|
| 328 |
+
interactive=False,
|
| 329 |
+
visible=False
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
upload_status = gr.Markdown(
|
| 333 |
+
"Upload your medical report PDF to get started"
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
upload_button = gr.Button("Process Report", variant="primary")
|
| 337 |
+
|
| 338 |
+
clear_button = gr.Button("Clear & Start Over", variant="secondary")
|
| 339 |
|
| 340 |
+
with gr.Column(scale=2):
|
| 341 |
+
with gr.Box():
|
| 342 |
+
gr.Markdown("### 2️⃣ Ask Questions About Your Report")
|
| 343 |
+
|
| 344 |
+
chat_interface = gr.Chatbot(
|
| 345 |
+
label="Conversation",
|
| 346 |
+
height=400,
|
| 347 |
+
show_copy_button=True,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
question_input = gr.Textbox(
|
| 351 |
+
label="Ask a question about your report",
|
| 352 |
+
placeholder="e.g., What does my blood pressure mean?",
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
with gr.Row():
|
| 356 |
+
submit_button = gr.Button("Submit Question", variant="primary")
|
| 357 |
+
clear_chat_button = gr.Button("Clear Chat", variant="secondary")
|
| 358 |
+
|
| 359 |
+
parameter_display = gr.JSON(
|
| 360 |
+
label="Extracted Parameters",
|
| 361 |
+
visible=False
|
| 362 |
+
)
|
| 363 |
|
| 364 |
+
# Set up interactions
|
| 365 |
+
upload_button.click(
|
| 366 |
+
fn=process_file_upload,
|
| 367 |
+
inputs=[file_upload],
|
| 368 |
+
outputs=[uploaded_file, upload_status, parameter_display]
|
| 369 |
)
|
| 370 |
|
| 371 |
+
submit_button.click(
|
| 372 |
fn=ask_question_gradio,
|
| 373 |
+
inputs=[question_input, chat_interface],
|
| 374 |
+
outputs=[question_input, chat_interface]
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
question_input.submit(
|
| 378 |
+
fn=ask_question_gradio,
|
| 379 |
+
inputs=[question_input, chat_interface],
|
| 380 |
+
outputs=[question_input, chat_interface]
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
clear_button.click(
|
| 384 |
+
fn=clear_conversation,
|
| 385 |
+
inputs=[],
|
| 386 |
+
outputs=[chat_interface, uploaded_file, upload_status, parameter_display]
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
clear_chat_button.click(
|
| 390 |
+
fn=lambda: ([], ""),
|
| 391 |
+
inputs=[],
|
| 392 |
+
outputs=[chat_interface, question_input]
|
| 393 |
)
|
| 394 |
|
| 395 |
# Mount the Gradio app to FastAPI
|