Spaces:
Running
Running
import argparse | |
import gradio | |
import torch | |
import torch.backends.cudnn as cudnn | |
from src.utils.vis import prob_to_mask | |
from src.lari.model import LaRIModel, DinoSegModel | |
from tools import load_model, process_image, post_process_output, get_masked_depth, save_to_glb, get_point_cloud, removebg_crop | |
from huggingface_hub import hf_hub_download | |
parser = argparse.ArgumentParser("Arguments for deploying a LaRI Demo") | |
parser.add_argument( | |
"--model_info_pm", | |
type=str, | |
default="LaRIModel(use_pretrained = 'moge_full', num_output_layer = 5, head_type = 'point')", | |
help="Network parameters to load the model", | |
) | |
parser.add_argument( | |
"--model_info_mask", | |
type=str, | |
default="DinoSegModel(use_pretrained = 'dinov2', dim_proj = 256, pretrained_path = '', num_output_layer = 4, output_type = 'ray_stop')", | |
help="Network parameters to load the model", | |
) | |
parser.add_argument( | |
"--ckpt_path_pm", | |
type=str, | |
default="lari_obj_16k_pointmap.pth", | |
help="Path to pre-trained weights", | |
) | |
parser.add_argument( | |
"--ckpt_path_mask", | |
type=str, | |
default="lari_obj_16k_seg.pth", | |
help="Path to pre-trained weights", | |
) | |
parser.add_argument( | |
"--resolution", type=int, default=512, help="Default model resolution" | |
) | |
args = parser.parse_args() | |
def model_forward(pil_input, layered_id, rembg_checkbox): | |
""" | |
Perform LaRI estimation by: | |
1. image processing | |
2. network forward | |
3. save masked layered depth image | |
4. save point cloud | |
""" | |
if pil_input is None: | |
return (None, None, None, None, None, None) | |
if rembg_checkbox: | |
pil_input = removebg_crop(pil_input) | |
# Process the input image. | |
input_tensor, ori_img_tensor, crop_coords, original_size = process_image( | |
pil_input, resolution=512 | |
) | |
input_tensor = input_tensor.to(device) | |
# Run inference. | |
with torch.no_grad(): | |
# lari map | |
pred_dict = model_pm(input_tensor) | |
lari_map = -pred_dict["pts3d"].squeeze( | |
0 | |
) # Expected output shape: (H_reso, W_reso, L, 3) | |
# mask | |
if model_mask: | |
pred_dict = model_mask(input_tensor) | |
assert "seg_prob" in pred_dict | |
valid_mask = prob_to_mask(pred_dict["seg_prob"].squeeze(0)) # H W L 1 | |
else: | |
h, w, l, _ = lari_map.shape | |
valid_mask = torch.new_ones((h, w, l, 1), device=lari_map.device) | |
# crop & resize the output to the original resolution. | |
if original_size[0] != args.resolution or original_size[1] != args.resolution: | |
lari_map = post_process_output(lari_map, crop_coords, original_size) # H W L 3 | |
valid_mask = post_process_output( | |
valid_mask.float(), crop_coords, original_size | |
).bool() # H W L 1 | |
max_n_layer = min(valid_mask.shape[-2], lari_map.shape[-2]) | |
valid_mask = valid_mask[:, :, :max_n_layer, :] | |
lari_map = lari_map[:, :, :max_n_layer, :] | |
curr_layer_id = min(max_n_layer - 1, layered_id - 1) | |
# masked depth list | |
depth_image = get_masked_depth( | |
lari_map=lari_map, valid_mask=valid_mask, layer_id=curr_layer_id | |
) | |
# point cloud | |
glb_path, ply_path = get_point_cloud( | |
lari_map, ori_img_tensor, valid_mask, first_layer_color="pseudo" | |
) | |
return ( | |
depth_image, | |
glb_path, | |
lari_map, | |
valid_mask, | |
0, | |
max_n_layer - 1, | |
glb_path, | |
ply_path, | |
pil_input, | |
) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
cudnn.benchmark = True | |
# Download the file | |
model_path_pm = hf_hub_download(repo_id="ruili3/LaRI", filename=args.ckpt_path_pm, repo_type="model") | |
model_path_mask = hf_hub_download(repo_id="ruili3/LaRI", filename=args.ckpt_path_mask, repo_type="model") | |
# Load the model with pretrained weights. | |
model_pm = load_model(args.model_info_pm, model_path_pm, device) | |
model_mask = ( | |
load_model(args.model_info_mask, model_path_mask, device) | |
if args.model_info_mask is not None | |
else None | |
) | |
def change_layer(slider_layer_id, lari_map, valid_mask, min_layer_id, max_layer_id): | |
if lari_map is None: | |
return | |
slider_layer_id = slider_layer_id - 1 | |
curr_layer_id = min(slider_layer_id, max_layer_id) | |
curr_layer_id = max(curr_layer_id, min_layer_id) | |
# masked depth list | |
depth_image = get_masked_depth( | |
lari_map=lari_map, valid_mask=valid_mask, layer_id=curr_layer_id | |
) | |
return depth_image | |
def clear_everything(): | |
return ( | |
gradio.update(value=None), | |
gradio.update(value=None), | |
gradio.update(value=None), | |
gradio.update(value=None), | |
gradio.update(value=None), | |
gradio.update(value=None), | |
gradio.update(value=None), | |
) | |
with gradio.Blocks( | |
css=""".gradio-container {margin: 0 !important; min-width: 100%};""", | |
title="LaRI Demo", | |
) as demo: | |
gradio.HTML( | |
""" | |
<h1 style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 1em;"> | |
LaRI: Layered Ray Intersections for Single-view 3D Geometric Reasoning | |
</h1> | |
""" | |
) | |
gradio.HTML( | |
""" | |
<p style="font-size: 16px; line-height: 1.6;"> | |
This is the official demo of Layered Ray Intersections | |
(<a href="https://ruili3.github.io/lari/index.html" target="_blank" style="color: #42aaf5;">LaRI</a>). | |
This demo currently supports object-level reconstruction only. | |
</p> | |
<h3 style="color: #42aaf5;">Get Started</h3> | |
<p style="font-size: 16px; line-height: 1.6;"> | |
As a quick start, click one image from `Examples` and press 'Process'. Try it out with your own images by following these steps: | |
<ul> | |
<li>Load an image</li> | |
<li>(Optional) Check the 'Remove Background' box</li> | |
<li>Click the 'Process' button</li> | |
<li>Explore the layered depth maps (z-channel of the LaRI point map) by adjusting the 'Layer ID' slider</li> | |
</ul> | |
</p> | |
<p style="font-size: 16px; line-height: 1.6;"> | |
In the '3D Point Cloud' view, different colors represent different intersection layers: | |
<span style="color: #FFBD1C;">Layer 1</span>, | |
<span style="color: #FB5607;">Layer 2</span>, | |
<span style="color: #F15BB5;">Layer 3</span>, | |
<span style="color: #8338EC;">Layer 4</span>. | |
</p> | |
<h3 style="color: #42aaf5;">Contact</h3> | |
<p style="font-size: 16px; line-height: 1.6;"> | |
If you have any questions, feel free to open an issue on our | |
<a href="https://github.com/ruili3/lari" target="_blank" style="color: #42aaf5;">GitHub repository</a> ⭐ | |
</p> | |
""" | |
) | |
# , <b style="color: #3A86FF;">layer 5</b>. | |
lari_map = gradio.State(None) | |
valid_mask = gradio.State(None) | |
min_layer_id = gradio.State(None) | |
max_layer_id = gradio.State(None) | |
with gradio.Column(): | |
with gradio.Row(equal_height=True): | |
with gradio.Column(scale=1): | |
image_input = gradio.Image( | |
label="Upload an Image", type="pil", height=350 | |
) | |
with gradio.Row(): | |
rembg_checkbox = gradio.Checkbox(label="Remove background") | |
clear_button = gradio.Button("Clear") | |
submit_btn = gradio.Button("Process") | |
with gradio.Column(scale=1): | |
depth_output = gradio.Image( | |
label="LaRI Map at Z-axis (depth)", | |
type="pil", | |
interactive=False, | |
height=300, | |
) | |
slider_layer_id = gradio.Slider( | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=1, | |
label="Layer ID", | |
interactive=True, | |
) | |
with gradio.Row(scale=1): | |
outmodel = gradio.Model3D( | |
label="3D Point Cloud (Color denotes different layers)", | |
interactive=False, | |
zoom_speed=0.5, | |
pan_speed=0.5, | |
height=450, | |
) | |
with gradio.Row(): | |
ply_file_output = gradio.File(label="ply output", elem_classes="small-file") | |
glb_file_output = gradio.File(label="glb output", elem_classes="small-file") | |
submit_btn.click( | |
fn=model_forward, | |
inputs=[image_input, slider_layer_id, rembg_checkbox], | |
outputs=[ | |
depth_output, | |
outmodel, | |
lari_map, | |
valid_mask, | |
min_layer_id, | |
max_layer_id, | |
glb_file_output, | |
ply_file_output, | |
image_input, | |
], | |
) | |
clear_button.click( | |
fn=clear_everything, | |
outputs=[ | |
lari_map, | |
valid_mask, | |
min_layer_id, | |
max_layer_id, | |
image_input, | |
depth_output, | |
outmodel, | |
], | |
) | |
slider_layer_id.change( | |
fn=change_layer, | |
inputs=[slider_layer_id, lari_map, valid_mask, min_layer_id, max_layer_id], | |
outputs=depth_output, | |
) | |
gradio.Examples(examples=["./assets/cole_hardware.png", | |
"./assets/3m_tape.png", | |
"./assets/horse.png", | |
"./assets/rhino.png", | |
"./assets/alphabet.png", | |
"./assets/martin_wedge.png", | |
"./assets/d_rose.png", | |
"./assets/ace.png", | |
"./assets/bifidus.png", | |
"./assets/fem.png", | |
], | |
inputs=image_input) | |
demo.launch(share=False) | |