File size: 6,883 Bytes
3c7556b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
<!DOCTYPE html>
<html lang="hi-IN">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Dusra Sawaal: Equations Solve Karna Gauss-Jordan Method Se</title>
    <style>
        body {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
            line-height: 1.8;
            margin: 0;
            padding: 20px;
            background-color: #f0f8ff; /* AliceBlue background */
            color: #333;
        }
        .container {
            max-width: 800px;
            margin: auto;
            background: #fff;
            padding: 25px;
            border-radius: 8px;
            box-shadow: 0 0 15px rgba(0,0,0,0.1);
        }
        h1, h2, h3 {
            color: #2c3e50; /* Dark blue */
            border-bottom: 2px solid #5dade2; /* Lighter blue border */
            padding-bottom: 5px;
        }
        h1 {
            text-align: center;
            font-size: 2em;
        }
        h2 {
            font-size: 1.5em;
            margin-top: 30px;
        }
        h3 {
            font-size: 1.2em;
            margin-top: 20px;
            color: #5dade2; /* Lighter blue */
        }
        p {
            margin-bottom: 15px;
        }
        .equations, .matrix-display {
            background-color: #eaf2f8; /* Light blue-gray */
            border: 1px solid #aed6f1; /* Soft blue border */
            padding: 15px;
            border-radius: 5px;
            margin-bottom: 20px;
            font-family: 'Courier New', Courier, monospace;
            font-size: 1.1em;
            overflow-x: auto;
            white-space: pre;
        }
        .matrix-display code {
            display: block;
        }
        .solution {
            background-color: #e8f8f5; /* Light cyan */
            border: 1px solid #76d7c4; /* Mint green border */
            padding: 15px;
            border-radius: 5px;
            font-size: 1.1em;
            font-weight: bold;
            color: #1abc9c; /* Turquoise */
        }
        .operation {
            font-style: italic;
            color: #7f8c8d; /* Gray */
        }
        .highlight {
            color: #e74c3c; /* Red for pivot */
            font-weight: bold;
        }
        .comment {
            color: #27ae60; /* Green for comments */
            font-style: italic;
        }
    </style>
</head>
<body>
    <div class="container">
        <h1>Linear Equations Ko Solve Karna (Part 2)</h1>
        <h2>(a) Sawaal (Problem Statement)</h2>
        <p>Gauss-Jordan method ka istemal karke yeh equations solve karo:</p>
        <div class="equations">
            2x - 6y + 8z = 24
            5x + 4y - 3z =  2
            3x +  y + 2z = 16
        </div>

        <h2>Gauss-Jordan Elimination Ke Steps</h2>
        <p>Sabse pehle, in equations ka augmented matrix banayenge:</p>
        <div class="matrix-display"><code>[ 2  -6   8 |  24 ]
[ 5   4  -3 |   2 ]
[ 3   1   2 |  16 ]</code></div>

        <h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
        <p>Pehla element (R1,C1) abhi 2 hai, isko 1 banana hai.</p>
        <p class="operation">R1 β†’ R1 / 2 (Row 1 ko 2 se divide karo)</p>
        <div class="matrix-display"><code>[ <span class="highlight">1</span>  -3   4 |  12 ]
[ 5   4  -3 |   2 ]
[ 3   1   2 |  16 ]</code></div>

        <h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
        <p>Ab R1,C1 wale pivot (1) ke neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p>
        <p class="operation">R2 β†’ R2 - 5*R1</p>
        <p class="operation">R3 β†’ R3 - 3*R1</p>
        <div class="matrix-display"><code>[ 1  -3   4 |  12 ]
[ 0  19 -23 | -58 ]  <span class="comment"><-- R2: [5-5*1, 4-5*(-3), -3-5*4 | 2-5*12] = [0, 19, -23 | -58]</span>
[ 0  10 -10 | -20 ]  <span class="comment"><-- R3: [3-3*1, 1-3*(-3), 2-3*4 | 16-3*12] = [0, 10, -10 | -20]</span></code></div>

        <h3>Step 3: Dusra pivot (R2,C2) ko 1 banana (Thoda Smart Work)</h3>
        <p>Dekho, Row 3 (R3) ko 10 se divide karke simplify kar sakte hain:</p>
        <p class="operation">R3 β†’ R3 / 10</p>
        <div class="matrix-display"><code>[ 1  -3   4 |  12 ]
[ 0  19 -23 | -58 ]
[ 0   1  -1 |  -2 ]  <span class="comment"><-- Simplified R3</span></code></div>
        <p>Ab R2 aur R3 ko swap (badal) kar lete hain taaki R2,C2 mein 1 aa jaaye.</p>
        <p class="operation">R2 ↔ R3</p>
        <div class="matrix-display"><code>[ 1  -3   4 |  12 ]
[ 0   <span class="highlight">1</span>  -1 |  -2 ]
[ 0  19 -23 | -58 ]</code></div>
        <p>Ab R2,C2 wala pivot 1 ho gaya!</p>

        <h3>Step 4: Dusre pivot ke upar aur neeche zeros banana</h3>
        <p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p>
        <p class="operation">R1 β†’ R1 + 3*R2</p>
        <p class="operation">R3 β†’ R3 - 19*R2</p>
        <div class="matrix-display"><code>[ 1   0   1 |   6 ]  <span class="comment"><-- R1: [1, -3+3*1, 4+3*(-1) | 12+3*(-2)] = [1, 0, 1 | 6]</span>
[ 0   1  -1 |  -2 ]
[ 0   0  -4 | -20 ]  <span class="comment"><-- R3: [0, 19-19*1, -23-19*(-1) | -58-19*(-2)] = [0, 0, -4 | -20]</span></code></div>

        <h3>Step 5: Teesra pivot (R3,C3) ko 1 banana</h3>
        <p>Ab R3,C3 wale element (-4) ko 1 banana hai.</p>
        <p class="operation">R3 β†’ R3 / (-4)</p>
        <div class="matrix-display"><code>[ 1   0   1 |   6 ]
[ 0   1  -1 |  -2 ]
[ 0   0   <span class="highlight">1</span> |   5 ]</code></div>

        <h3>Step 6: Teesre pivot ke upar zeros banana</h3>
        <p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p>
        <p class="operation">R1 β†’ R1 - R3</p>
        <p class="operation">R2 β†’ R2 + R3</p>
        <div class="matrix-display"><code>[ 1   0   0 |   1 ]  <span class="comment"><-- R1: [1-0, 0-0, 1-1 | 6-5] = [1, 0, 0 | 1]</span>
[ 0   1   0 |   3 ]  <span class="comment"><-- R2: [0+0, 1+0, -1+1 | -2+5] = [0, 1, 0 | 3]</span>
[ 0   0   1 |   5 ]</code></div>
        <p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>

        <h2>Hal (Solution)</h2>
        <p>RREF matrix se humein solution milta hai:</p>
        <div class="solution">
            x = 1 <br>
            y = 3 <br>
            z = 5
        </div>

        <h2>Jaanch (Verification)</h2>
        <p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
        
        <h3>Equation 1: 2x - 6y + 8z = 24</h3>
        <p>2(1) - 6(3) + 8(5) = 2 - 18 + 40 = -16 + 40 = <strong>24</strong> (Sahi hai!)</p>

        <h3>Equation 2: 5x + 4y - 3z = 2</h3>
        <p>5(1) + 4(3) - 3(5) = 5 + 12 - 15 = 17 - 15 = <strong>2</strong> (Sahi hai!)</p>

        <h3>Equation 3: 3x + y + 2z = 16</h3>
        <p>3(1) + (3) + 2(5) = 3 + 3 + 10 = 6 + 10 = <strong>16</strong> (Sahi hai!)</p>
        
        <p>Solution bilkul sahi hai!</p>
    </div>
</body>
</html>