Spaces:
Running
Running
File size: 6,883 Bytes
3c7556b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
<!DOCTYPE html>
<html lang="hi-IN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Dusra Sawaal: Equations Solve Karna Gauss-Jordan Method Se</title>
<style>
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
line-height: 1.8;
margin: 0;
padding: 20px;
background-color: #f0f8ff; /* AliceBlue background */
color: #333;
}
.container {
max-width: 800px;
margin: auto;
background: #fff;
padding: 25px;
border-radius: 8px;
box-shadow: 0 0 15px rgba(0,0,0,0.1);
}
h1, h2, h3 {
color: #2c3e50; /* Dark blue */
border-bottom: 2px solid #5dade2; /* Lighter blue border */
padding-bottom: 5px;
}
h1 {
text-align: center;
font-size: 2em;
}
h2 {
font-size: 1.5em;
margin-top: 30px;
}
h3 {
font-size: 1.2em;
margin-top: 20px;
color: #5dade2; /* Lighter blue */
}
p {
margin-bottom: 15px;
}
.equations, .matrix-display {
background-color: #eaf2f8; /* Light blue-gray */
border: 1px solid #aed6f1; /* Soft blue border */
padding: 15px;
border-radius: 5px;
margin-bottom: 20px;
font-family: 'Courier New', Courier, monospace;
font-size: 1.1em;
overflow-x: auto;
white-space: pre;
}
.matrix-display code {
display: block;
}
.solution {
background-color: #e8f8f5; /* Light cyan */
border: 1px solid #76d7c4; /* Mint green border */
padding: 15px;
border-radius: 5px;
font-size: 1.1em;
font-weight: bold;
color: #1abc9c; /* Turquoise */
}
.operation {
font-style: italic;
color: #7f8c8d; /* Gray */
}
.highlight {
color: #e74c3c; /* Red for pivot */
font-weight: bold;
}
.comment {
color: #27ae60; /* Green for comments */
font-style: italic;
}
</style>
</head>
<body>
<div class="container">
<h1>Linear Equations Ko Solve Karna (Part 2)</h1>
<h2>(a) Sawaal (Problem Statement)</h2>
<p>Gauss-Jordan method ka istemal karke yeh equations solve karo:</p>
<div class="equations">
2x - 6y + 8z = 24
5x + 4y - 3z = 2
3x + y + 2z = 16
</div>
<h2>Gauss-Jordan Elimination Ke Steps</h2>
<p>Sabse pehle, in equations ka augmented matrix banayenge:</p>
<div class="matrix-display"><code>[ 2 -6 8 | 24 ]
[ 5 4 -3 | 2 ]
[ 3 1 2 | 16 ]</code></div>
<h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
<p>Pehla element (R1,C1) abhi 2 hai, isko 1 banana hai.</p>
<p class="operation">R1 β R1 / 2 (Row 1 ko 2 se divide karo)</p>
<div class="matrix-display"><code>[ <span class="highlight">1</span> -3 4 | 12 ]
[ 5 4 -3 | 2 ]
[ 3 1 2 | 16 ]</code></div>
<h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
<p>Ab R1,C1 wale pivot (1) ke neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p>
<p class="operation">R2 β R2 - 5*R1</p>
<p class="operation">R3 β R3 - 3*R1</p>
<div class="matrix-display"><code>[ 1 -3 4 | 12 ]
[ 0 19 -23 | -58 ] <span class="comment"><-- R2: [5-5*1, 4-5*(-3), -3-5*4 | 2-5*12] = [0, 19, -23 | -58]</span>
[ 0 10 -10 | -20 ] <span class="comment"><-- R3: [3-3*1, 1-3*(-3), 2-3*4 | 16-3*12] = [0, 10, -10 | -20]</span></code></div>
<h3>Step 3: Dusra pivot (R2,C2) ko 1 banana (Thoda Smart Work)</h3>
<p>Dekho, Row 3 (R3) ko 10 se divide karke simplify kar sakte hain:</p>
<p class="operation">R3 β R3 / 10</p>
<div class="matrix-display"><code>[ 1 -3 4 | 12 ]
[ 0 19 -23 | -58 ]
[ 0 1 -1 | -2 ] <span class="comment"><-- Simplified R3</span></code></div>
<p>Ab R2 aur R3 ko swap (badal) kar lete hain taaki R2,C2 mein 1 aa jaaye.</p>
<p class="operation">R2 β R3</p>
<div class="matrix-display"><code>[ 1 -3 4 | 12 ]
[ 0 <span class="highlight">1</span> -1 | -2 ]
[ 0 19 -23 | -58 ]</code></div>
<p>Ab R2,C2 wala pivot 1 ho gaya!</p>
<h3>Step 4: Dusre pivot ke upar aur neeche zeros banana</h3>
<p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p>
<p class="operation">R1 β R1 + 3*R2</p>
<p class="operation">R3 β R3 - 19*R2</p>
<div class="matrix-display"><code>[ 1 0 1 | 6 ] <span class="comment"><-- R1: [1, -3+3*1, 4+3*(-1) | 12+3*(-2)] = [1, 0, 1 | 6]</span>
[ 0 1 -1 | -2 ]
[ 0 0 -4 | -20 ] <span class="comment"><-- R3: [0, 19-19*1, -23-19*(-1) | -58-19*(-2)] = [0, 0, -4 | -20]</span></code></div>
<h3>Step 5: Teesra pivot (R3,C3) ko 1 banana</h3>
<p>Ab R3,C3 wale element (-4) ko 1 banana hai.</p>
<p class="operation">R3 β R3 / (-4)</p>
<div class="matrix-display"><code>[ 1 0 1 | 6 ]
[ 0 1 -1 | -2 ]
[ 0 0 <span class="highlight">1</span> | 5 ]</code></div>
<h3>Step 6: Teesre pivot ke upar zeros banana</h3>
<p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p>
<p class="operation">R1 β R1 - R3</p>
<p class="operation">R2 β R2 + R3</p>
<div class="matrix-display"><code>[ 1 0 0 | 1 ] <span class="comment"><-- R1: [1-0, 0-0, 1-1 | 6-5] = [1, 0, 0 | 1]</span>
[ 0 1 0 | 3 ] <span class="comment"><-- R2: [0+0, 1+0, -1+1 | -2+5] = [0, 1, 0 | 3]</span>
[ 0 0 1 | 5 ]</code></div>
<p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p>
<h2>Hal (Solution)</h2>
<p>RREF matrix se humein solution milta hai:</p>
<div class="solution">
x = 1 <br>
y = 3 <br>
z = 5
</div>
<h2>Jaanch (Verification)</h2>
<p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p>
<h3>Equation 1: 2x - 6y + 8z = 24</h3>
<p>2(1) - 6(3) + 8(5) = 2 - 18 + 40 = -16 + 40 = <strong>24</strong> (Sahi hai!)</p>
<h3>Equation 2: 5x + 4y - 3z = 2</h3>
<p>5(1) + 4(3) - 3(5) = 5 + 12 - 15 = 17 - 15 = <strong>2</strong> (Sahi hai!)</p>
<h3>Equation 3: 3x + y + 2z = 16</h3>
<p>3(1) + (3) + 2(5) = 3 + 3 + 10 = 6 + 10 = <strong>16</strong> (Sahi hai!)</p>
<p>Solution bilkul sahi hai!</p>
</div>
</body>
</html> |