ekta-q / 3-elimination.html
sameernotes's picture
Create 3-elimination.html
9a00fa8 verified
<!DOCTYPE html>
<html lang="hi-IN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Gauss Elimination Method Se Equations Solve Karna</title>
<style>
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
line-height: 1.8;
margin: 0;
padding: 20px;
background-color: #e6e6fa; /* Lavender background */
color: #333;
}
.container {
max-width: 800px;
margin: auto;
background: #fff;
padding: 25px;
border-radius: 8px;
box-shadow: 0 0 15px rgba(0,0,0,0.1);
}
h1, h2, h3 {
color: #483d8b; /* Dark Slate Blue */
border-bottom: 2px solid #9370db; /* Medium Purple border */
padding-bottom: 5px;
}
h1 {
text-align: center;
font-size: 2em;
}
h2 {
font-size: 1.5em;
margin-top: 30px;
}
h3 {
font-size: 1.2em;
margin-top: 20px;
color: #9370db; /* Medium Purple */
}
p {
margin-bottom: 15px;
}
.equations, .matrix-display {
background-color: #f8f8ff; /* Ghost White */
border: 1px solid #d8bfd8; /* Thistle border */
padding: 15px;
border-radius: 5px;
margin-bottom: 20px;
font-family: 'Courier New', Courier, monospace;
font-size: 1.1em;
overflow-x: auto;
white-space: pre;
}
.matrix-display code {
display: block;
}
.solution {
background-color: #f0fff0; /* Honeydew */
border: 1px solid #98fb98; /* Pale Green border */
padding: 15px;
border-radius: 5px;
font-size: 1.1em;
font-weight: bold;
color: #3cb371; /* Medium Sea Green */
}
.operation {
font-style: italic;
color: #6a5acd; /* Slate Blue */
}
.highlight {
color: #db7093; /* Pale Violet Red for pivot */
font-weight: bold;
}
.comment {
color: #2e8b57; /* Sea Green for comments */
font-style: italic;
}
.back-substitution {
background-color: #fffacd; /* Lemon Chiffon */
padding: 10px;
border-left: 4px solid #ffd700; /* Gold */
margin-top: 15px;
}
</style>
</head>
<body>
<div class="container">
<h1>Gauss Elimination Method</h1>
<h2>(a) Sawaal (Problem Statement)</h2>
<p>Gauss Elimination method ka istemal karke yeh system of equations solve karo:</p>
<div class="equations">
6x₁ + 3xβ‚‚ + 2x₃ = 6
6x₁ + 4xβ‚‚ + 3x₃ = 0
20x₁ + 15xβ‚‚ + 12x₃ = 0
</div>
<h2>Gauss Elimination Ke Steps</h2>
<p>Pehle, augmented matrix banate hain:</p>
<div class="matrix-display"><code>[ 6 3 2 | 6 ]
[ 6 4 3 | 0 ]
[ 20 15 12 | 0 ]</code></div>
<h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
<p>Pehla element (R1,C1) 6 hai, isko 1 banana hai.</p>
<p class="operation">R1 β†’ R1 / 6</p>
<div class="matrix-display"><code>[ <span class="highlight">1</span> 1/2 1/3 | 1 ] <span class="comment"><-- (6/6=1, 3/6=1/2, 2/6=1/3, 6/6=1)</span>
[ 6 4 3 | 0 ]
[ 20 15 12 | 0 ]</code></div>
<h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
<p>Ab R1,C1 wale pivot (1) ke neeche ke elements ko zero karenge.</p>
<p class="operation">R2 β†’ R2 - 6*R1</p>
<p class="operation">R3 β†’ R3 - 20*R1</p>
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
[ 0 1 1 | -6 ] <span class="comment"><-- R2: [6-6*1, 4-6*(1/2), 3-6*(1/3) | 0-6*1] = [0, 1, 1 | -6]</span>
[ 0 5 16/3 | -20] <span class="comment"><-- R3: [20-20*1, 15-20*(1/2), 12-20*(1/3) | 0-20*1] = [0, 5, (36-20)/3 | -20] = [0, 5, 16/3 | -20]</span></code></div>
<p>Yahaan R2,C2 mein already 1 aa gaya, toh accha hai!</p>
<h3>Step 3: Dusre pivot ke neeche zero banana</h3>
<p>Ab R2,C2 wala pivot 1 hai. Iske neeche (R3,C2) zero banana hai.</p>
<p class="operation">R3 β†’ R3 - 5*R2</p>
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
[ 0 <span class="highlight">1</span> 1 | -6 ]
[ 0 0 1/3 | 10] <span class="comment"><-- R3: [0-5*0, 5-5*1, 16/3-5*1 | -20-5*(-6)] = [0, 0, (16-15)/3 | -20+30] = [0, 0, 1/3 | 10]</span></code></div>
<p>Matrix ab Row Echelon Form (REF) mein hai. Ab pivot elements ko 1 banana hai (teesre ko).</p>
<h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
<p class="operation">R3 β†’ R3 * 3</p>
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
[ 0 1 1 | -6 ]
[ 0 0 <span class="highlight">1</span> | 30 ]</code></div>
<p>Matrix ab Row Echelon Form (REF) mein hai aur pivots 1 hain. Gauss Elimination yahan tak hota hai. Ab hum back-substitution karenge.</p>
<h2>Back-Substitution (Peeche se values nikalna)</h2>
<p>Matrix se equations wapas likhte hain:</p>
<div class="back-substitution">
Equation 1: x₁ + (1/2)xβ‚‚ + (1/3)x₃ = 1 <br>
Equation 2: xβ‚‚ + x₃ = -6 <br>
Equation 3: x₃ = 30
</div>
<p><strong>Equation 3 se:</strong></p>
<p>x₃ = <strong>30</strong></p>
<p><strong>x₃ ki value Equation 2 mein daalo:</strong></p>
<p>xβ‚‚ + (30) = -6</p>
<p>xβ‚‚ = -6 - 30</p>
<p>xβ‚‚ = <strong>-36</strong></p>
<p><strong>xβ‚‚ aur x₃ ki values Equation 1 mein daalo:</strong></p>
<p>x₁ + (1/2)(-36) + (1/3)(30) = 1</p>
<p>x₁ - 18 + 10 = 1</p>
<p>x₁ - 8 = 1</p>
<p>x₁ = 1 + 8</p>
<p>x₁ = <strong>9</strong></p>
<h2>Hal (Solution)</h2>
<div class="solution">
x₁ = 9 <br>
xβ‚‚ = -36 <br>
x₃ = 30
</div>
<h2>Jaanch (Verification)</h2>
<p>Values ko original equations mein daal kar check karte hain:</p>
<h3>Original Equation 1: 6x₁ + 3xβ‚‚ + 2x₃ = 6</h3>
<p>6(9) + 3(-36) + 2(30) = 54 - 108 + 60 = 114 - 108 = <strong>6</strong> (Sahi hai!)</p>
<h3>Original Equation 2: 6x₁ + 4xβ‚‚ + 3x₃ = 0</h3>
<p>6(9) + 4(-36) + 3(30) = 54 - 144 + 90 = 144 - 144 = <strong>0</strong> (Sahi hai!)</p>
<h3>Original Equation 3: 20x₁ + 15xβ‚‚ + 12x₃ = 0</h3>
<p>20(9) + 15(-36) + 12(30) = 180 - 540 + 360 = 540 - 540 = <strong>0</strong> (Sahi hai!)</p>
<p>Solution bilkul sahi hai!</p>
</div>
</body>
</html>