Spaces:
Running
Running
| <html lang="hi-IN"> | |
| <head> | |
| <meta charset="UTF-8"> | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
| <title>Gauss Elimination Method Se Equations Solve Karna</title> | |
| <style> | |
| body { | |
| font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
| line-height: 1.8; | |
| margin: 0; | |
| padding: 20px; | |
| background-color: #e6e6fa; /* Lavender background */ | |
| color: #333; | |
| } | |
| .container { | |
| max-width: 800px; | |
| margin: auto; | |
| background: #fff; | |
| padding: 25px; | |
| border-radius: 8px; | |
| box-shadow: 0 0 15px rgba(0,0,0,0.1); | |
| } | |
| h1, h2, h3 { | |
| color: #483d8b; /* Dark Slate Blue */ | |
| border-bottom: 2px solid #9370db; /* Medium Purple border */ | |
| padding-bottom: 5px; | |
| } | |
| h1 { | |
| text-align: center; | |
| font-size: 2em; | |
| } | |
| h2 { | |
| font-size: 1.5em; | |
| margin-top: 30px; | |
| } | |
| h3 { | |
| font-size: 1.2em; | |
| margin-top: 20px; | |
| color: #9370db; /* Medium Purple */ | |
| } | |
| p { | |
| margin-bottom: 15px; | |
| } | |
| .equations, .matrix-display { | |
| background-color: #f8f8ff; /* Ghost White */ | |
| border: 1px solid #d8bfd8; /* Thistle border */ | |
| padding: 15px; | |
| border-radius: 5px; | |
| margin-bottom: 20px; | |
| font-family: 'Courier New', Courier, monospace; | |
| font-size: 1.1em; | |
| overflow-x: auto; | |
| white-space: pre; | |
| } | |
| .matrix-display code { | |
| display: block; | |
| } | |
| .solution { | |
| background-color: #f0fff0; /* Honeydew */ | |
| border: 1px solid #98fb98; /* Pale Green border */ | |
| padding: 15px; | |
| border-radius: 5px; | |
| font-size: 1.1em; | |
| font-weight: bold; | |
| color: #3cb371; /* Medium Sea Green */ | |
| } | |
| .operation { | |
| font-style: italic; | |
| color: #6a5acd; /* Slate Blue */ | |
| } | |
| .highlight { | |
| color: #db7093; /* Pale Violet Red for pivot */ | |
| font-weight: bold; | |
| } | |
| .comment { | |
| color: #2e8b57; /* Sea Green for comments */ | |
| font-style: italic; | |
| } | |
| .back-substitution { | |
| background-color: #fffacd; /* Lemon Chiffon */ | |
| padding: 10px; | |
| border-left: 4px solid #ffd700; /* Gold */ | |
| margin-top: 15px; | |
| } | |
| </style> | |
| </head> | |
| <body> | |
| <div class="container"> | |
| <h1>Gauss Elimination Method</h1> | |
| <h2>(a) Sawaal (Problem Statement)</h2> | |
| <p>Gauss Elimination method ka istemal karke yeh system of equations solve karo:</p> | |
| <div class="equations"> | |
| 6xβ + 3xβ + 2xβ = 6 | |
| 6xβ + 4xβ + 3xβ = 0 | |
| 20xβ + 15xβ + 12xβ = 0 | |
| </div> | |
| <h2>Gauss Elimination Ke Steps</h2> | |
| <p>Pehle, augmented matrix banate hain:</p> | |
| <div class="matrix-display"><code>[ 6 3 2 | 6 ] | |
| [ 6 4 3 | 0 ] | |
| [ 20 15 12 | 0 ]</code></div> | |
| <h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3> | |
| <p>Pehla element (R1,C1) 6 hai, isko 1 banana hai.</p> | |
| <p class="operation">R1 β R1 / 6</p> | |
| <div class="matrix-display"><code>[ <span class="highlight">1</span> 1/2 1/3 | 1 ] <span class="comment"><-- (6/6=1, 3/6=1/2, 2/6=1/3, 6/6=1)</span> | |
| [ 6 4 3 | 0 ] | |
| [ 20 15 12 | 0 ]</code></div> | |
| <h3>Step 2: Pehle pivot ke neeche zeros banana</h3> | |
| <p>Ab R1,C1 wale pivot (1) ke neeche ke elements ko zero karenge.</p> | |
| <p class="operation">R2 β R2 - 6*R1</p> | |
| <p class="operation">R3 β R3 - 20*R1</p> | |
| <div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ] | |
| [ 0 1 1 | -6 ] <span class="comment"><-- R2: [6-6*1, 4-6*(1/2), 3-6*(1/3) | 0-6*1] = [0, 1, 1 | -6]</span> | |
| [ 0 5 16/3 | -20] <span class="comment"><-- R3: [20-20*1, 15-20*(1/2), 12-20*(1/3) | 0-20*1] = [0, 5, (36-20)/3 | -20] = [0, 5, 16/3 | -20]</span></code></div> | |
| <p>Yahaan R2,C2 mein already 1 aa gaya, toh accha hai!</p> | |
| <h3>Step 3: Dusre pivot ke neeche zero banana</h3> | |
| <p>Ab R2,C2 wala pivot 1 hai. Iske neeche (R3,C2) zero banana hai.</p> | |
| <p class="operation">R3 β R3 - 5*R2</p> | |
| <div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ] | |
| [ 0 <span class="highlight">1</span> 1 | -6 ] | |
| [ 0 0 1/3 | 10] <span class="comment"><-- R3: [0-5*0, 5-5*1, 16/3-5*1 | -20-5*(-6)] = [0, 0, (16-15)/3 | -20+30] = [0, 0, 1/3 | 10]</span></code></div> | |
| <p>Matrix ab Row Echelon Form (REF) mein hai. Ab pivot elements ko 1 banana hai (teesre ko).</p> | |
| <h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3> | |
| <p class="operation">R3 β R3 * 3</p> | |
| <div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ] | |
| [ 0 1 1 | -6 ] | |
| [ 0 0 <span class="highlight">1</span> | 30 ]</code></div> | |
| <p>Matrix ab Row Echelon Form (REF) mein hai aur pivots 1 hain. Gauss Elimination yahan tak hota hai. Ab hum back-substitution karenge.</p> | |
| <h2>Back-Substitution (Peeche se values nikalna)</h2> | |
| <p>Matrix se equations wapas likhte hain:</p> | |
| <div class="back-substitution"> | |
| Equation 1: xβ + (1/2)xβ + (1/3)xβ = 1 <br> | |
| Equation 2: xβ + xβ = -6 <br> | |
| Equation 3: xβ = 30 | |
| </div> | |
| <p><strong>Equation 3 se:</strong></p> | |
| <p>xβ = <strong>30</strong></p> | |
| <p><strong>xβ ki value Equation 2 mein daalo:</strong></p> | |
| <p>xβ + (30) = -6</p> | |
| <p>xβ = -6 - 30</p> | |
| <p>xβ = <strong>-36</strong></p> | |
| <p><strong>xβ aur xβ ki values Equation 1 mein daalo:</strong></p> | |
| <p>xβ + (1/2)(-36) + (1/3)(30) = 1</p> | |
| <p>xβ - 18 + 10 = 1</p> | |
| <p>xβ - 8 = 1</p> | |
| <p>xβ = 1 + 8</p> | |
| <p>xβ = <strong>9</strong></p> | |
| <h2>Hal (Solution)</h2> | |
| <div class="solution"> | |
| xβ = 9 <br> | |
| xβ = -36 <br> | |
| xβ = 30 | |
| </div> | |
| <h2>Jaanch (Verification)</h2> | |
| <p>Values ko original equations mein daal kar check karte hain:</p> | |
| <h3>Original Equation 1: 6xβ + 3xβ + 2xβ = 6</h3> | |
| <p>6(9) + 3(-36) + 2(30) = 54 - 108 + 60 = 114 - 108 = <strong>6</strong> (Sahi hai!)</p> | |
| <h3>Original Equation 2: 6xβ + 4xβ + 3xβ = 0</h3> | |
| <p>6(9) + 4(-36) + 3(30) = 54 - 144 + 90 = 144 - 144 = <strong>0</strong> (Sahi hai!)</p> | |
| <h3>Original Equation 3: 20xβ + 15xβ + 12xβ = 0</h3> | |
| <p>20(9) + 15(-36) + 12(30) = 180 - 540 + 360 = 540 - 540 = <strong>0</strong> (Sahi hai!)</p> | |
| <p>Solution bilkul sahi hai!</p> | |
| </div> | |
| </body> | |
| </html> |