Spaces:
Running
Running
Create 3-elimination.html
Browse files- 3-elimination.html +181 -0
3-elimination.html
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="hi-IN">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Gauss Elimination Method Se Equations Solve Karna</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 10 |
+
line-height: 1.8;
|
| 11 |
+
margin: 0;
|
| 12 |
+
padding: 20px;
|
| 13 |
+
background-color: #e6e6fa; /* Lavender background */
|
| 14 |
+
color: #333;
|
| 15 |
+
}
|
| 16 |
+
.container {
|
| 17 |
+
max-width: 800px;
|
| 18 |
+
margin: auto;
|
| 19 |
+
background: #fff;
|
| 20 |
+
padding: 25px;
|
| 21 |
+
border-radius: 8px;
|
| 22 |
+
box-shadow: 0 0 15px rgba(0,0,0,0.1);
|
| 23 |
+
}
|
| 24 |
+
h1, h2, h3 {
|
| 25 |
+
color: #483d8b; /* Dark Slate Blue */
|
| 26 |
+
border-bottom: 2px solid #9370db; /* Medium Purple border */
|
| 27 |
+
padding-bottom: 5px;
|
| 28 |
+
}
|
| 29 |
+
h1 {
|
| 30 |
+
text-align: center;
|
| 31 |
+
font-size: 2em;
|
| 32 |
+
}
|
| 33 |
+
h2 {
|
| 34 |
+
font-size: 1.5em;
|
| 35 |
+
margin-top: 30px;
|
| 36 |
+
}
|
| 37 |
+
h3 {
|
| 38 |
+
font-size: 1.2em;
|
| 39 |
+
margin-top: 20px;
|
| 40 |
+
color: #9370db; /* Medium Purple */
|
| 41 |
+
}
|
| 42 |
+
p {
|
| 43 |
+
margin-bottom: 15px;
|
| 44 |
+
}
|
| 45 |
+
.equations, .matrix-display {
|
| 46 |
+
background-color: #f8f8ff; /* Ghost White */
|
| 47 |
+
border: 1px solid #d8bfd8; /* Thistle border */
|
| 48 |
+
padding: 15px;
|
| 49 |
+
border-radius: 5px;
|
| 50 |
+
margin-bottom: 20px;
|
| 51 |
+
font-family: 'Courier New', Courier, monospace;
|
| 52 |
+
font-size: 1.1em;
|
| 53 |
+
overflow-x: auto;
|
| 54 |
+
white-space: pre;
|
| 55 |
+
}
|
| 56 |
+
.matrix-display code {
|
| 57 |
+
display: block;
|
| 58 |
+
}
|
| 59 |
+
.solution {
|
| 60 |
+
background-color: #f0fff0; /* Honeydew */
|
| 61 |
+
border: 1px solid #98fb98; /* Pale Green border */
|
| 62 |
+
padding: 15px;
|
| 63 |
+
border-radius: 5px;
|
| 64 |
+
font-size: 1.1em;
|
| 65 |
+
font-weight: bold;
|
| 66 |
+
color: #3cb371; /* Medium Sea Green */
|
| 67 |
+
}
|
| 68 |
+
.operation {
|
| 69 |
+
font-style: italic;
|
| 70 |
+
color: #6a5acd; /* Slate Blue */
|
| 71 |
+
}
|
| 72 |
+
.highlight {
|
| 73 |
+
color: #db7093; /* Pale Violet Red for pivot */
|
| 74 |
+
font-weight: bold;
|
| 75 |
+
}
|
| 76 |
+
.comment {
|
| 77 |
+
color: #2e8b57; /* Sea Green for comments */
|
| 78 |
+
font-style: italic;
|
| 79 |
+
}
|
| 80 |
+
.back-substitution {
|
| 81 |
+
background-color: #fffacd; /* Lemon Chiffon */
|
| 82 |
+
padding: 10px;
|
| 83 |
+
border-left: 4px solid #ffd700; /* Gold */
|
| 84 |
+
margin-top: 15px;
|
| 85 |
+
}
|
| 86 |
+
</style>
|
| 87 |
+
</head>
|
| 88 |
+
<body>
|
| 89 |
+
<div class="container">
|
| 90 |
+
<h1>Gauss Elimination Method</h1>
|
| 91 |
+
<h2>(a) Sawaal (Problem Statement)</h2>
|
| 92 |
+
<p>Gauss Elimination method ka istemal karke yeh system of equations solve karo:</p>
|
| 93 |
+
<div class="equations">
|
| 94 |
+
6xβ + 3xβ + 2xβ = 6
|
| 95 |
+
6xβ + 4xβ + 3xβ = 0
|
| 96 |
+
20xβ + 15xβ + 12xβ = 0
|
| 97 |
+
</div>
|
| 98 |
+
|
| 99 |
+
<h2>Gauss Elimination Ke Steps</h2>
|
| 100 |
+
<p>Pehle, augmented matrix banate hain:</p>
|
| 101 |
+
<div class="matrix-display"><code>[ 6 3 2 | 6 ]
|
| 102 |
+
[ 6 4 3 | 0 ]
|
| 103 |
+
[ 20 15 12 | 0 ]</code></div>
|
| 104 |
+
|
| 105 |
+
<h3>Step 1: Pehla pivot (R1,C1) ko 1 banana</h3>
|
| 106 |
+
<p>Pehla element (R1,C1) 6 hai, isko 1 banana hai.</p>
|
| 107 |
+
<p class="operation">R1 β R1 / 6</p>
|
| 108 |
+
<div class="matrix-display"><code>[ <span class="highlight">1</span> 1/2 1/3 | 1 ] <span class="comment"><-- (6/6=1, 3/6=1/2, 2/6=1/3, 6/6=1)</span>
|
| 109 |
+
[ 6 4 3 | 0 ]
|
| 110 |
+
[ 20 15 12 | 0 ]</code></div>
|
| 111 |
+
|
| 112 |
+
<h3>Step 2: Pehle pivot ke neeche zeros banana</h3>
|
| 113 |
+
<p>Ab R1,C1 wale pivot (1) ke neeche ke elements ko zero karenge.</p>
|
| 114 |
+
<p class="operation">R2 β R2 - 6*R1</p>
|
| 115 |
+
<p class="operation">R3 β R3 - 20*R1</p>
|
| 116 |
+
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
|
| 117 |
+
[ 0 1 1 | -6 ] <span class="comment"><-- R2: [6-6*1, 4-6*(1/2), 3-6*(1/3) | 0-6*1] = [0, 1, 1 | -6]</span>
|
| 118 |
+
[ 0 5 16/3 | -20] <span class="comment"><-- R3: [20-20*1, 15-20*(1/2), 12-20*(1/3) | 0-20*1] = [0, 5, (36-20)/3 | -20] = [0, 5, 16/3 | -20]</span></code></div>
|
| 119 |
+
<p>Yahaan R2,C2 mein already 1 aa gaya, toh accha hai!</p>
|
| 120 |
+
|
| 121 |
+
<h3>Step 3: Dusre pivot ke neeche zero banana</h3>
|
| 122 |
+
<p>Ab R2,C2 wala pivot 1 hai. Iske neeche (R3,C2) zero banana hai.</p>
|
| 123 |
+
<p class="operation">R3 β R3 - 5*R2</p>
|
| 124 |
+
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
|
| 125 |
+
[ 0 <span class="highlight">1</span> 1 | -6 ]
|
| 126 |
+
[ 0 0 1/3 | 10] <span class="comment"><-- R3: [0-5*0, 5-5*1, 16/3-5*1 | -20-5*(-6)] = [0, 0, (16-15)/3 | -20+30] = [0, 0, 1/3 | 10]</span></code></div>
|
| 127 |
+
<p>Matrix ab Row Echelon Form (REF) mein hai. Ab pivot elements ko 1 banana hai (teesre ko).</p>
|
| 128 |
+
|
| 129 |
+
<h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3>
|
| 130 |
+
<p class="operation">R3 β R3 * 3</p>
|
| 131 |
+
<div class="matrix-display"><code>[ 1 1/2 1/3 | 1 ]
|
| 132 |
+
[ 0 1 1 | -6 ]
|
| 133 |
+
[ 0 0 <span class="highlight">1</span> | 30 ]</code></div>
|
| 134 |
+
<p>Matrix ab Row Echelon Form (REF) mein hai aur pivots 1 hain. Gauss Elimination yahan tak hota hai. Ab hum back-substitution karenge.</p>
|
| 135 |
+
|
| 136 |
+
<h2>Back-Substitution (Peeche se values nikalna)</h2>
|
| 137 |
+
<p>Matrix se equations wapas likhte hain:</p>
|
| 138 |
+
<div class="back-substitution">
|
| 139 |
+
Equation 1: xβ + (1/2)xβ + (1/3)xβ = 1 <br>
|
| 140 |
+
Equation 2: xβ + xβ = -6 <br>
|
| 141 |
+
Equation 3: xβ = 30
|
| 142 |
+
</div>
|
| 143 |
+
|
| 144 |
+
<p><strong>Equation 3 se:</strong></p>
|
| 145 |
+
<p>xβ = <strong>30</strong></p>
|
| 146 |
+
|
| 147 |
+
<p><strong>xβ ki value Equation 2 mein daalo:</strong></p>
|
| 148 |
+
<p>xβ + (30) = -6</p>
|
| 149 |
+
<p>xβ = -6 - 30</p>
|
| 150 |
+
<p>xβ = <strong>-36</strong></p>
|
| 151 |
+
|
| 152 |
+
<p><strong>xβ aur xβ ki values Equation 1 mein daalo:</strong></p>
|
| 153 |
+
<p>xβ + (1/2)(-36) + (1/3)(30) = 1</p>
|
| 154 |
+
<p>xβ - 18 + 10 = 1</p>
|
| 155 |
+
<p>xβ - 8 = 1</p>
|
| 156 |
+
<p>xβ = 1 + 8</p>
|
| 157 |
+
<p>xβ = <strong>9</strong></p>
|
| 158 |
+
|
| 159 |
+
<h2>Hal (Solution)</h2>
|
| 160 |
+
<div class="solution">
|
| 161 |
+
xβ = 9 <br>
|
| 162 |
+
xβ = -36 <br>
|
| 163 |
+
xβ = 30
|
| 164 |
+
</div>
|
| 165 |
+
|
| 166 |
+
<h2>Jaanch (Verification)</h2>
|
| 167 |
+
<p>Values ko original equations mein daal kar check karte hain:</p>
|
| 168 |
+
|
| 169 |
+
<h3>Original Equation 1: 6xβ + 3xβ + 2xβ = 6</h3>
|
| 170 |
+
<p>6(9) + 3(-36) + 2(30) = 54 - 108 + 60 = 114 - 108 = <strong>6</strong> (Sahi hai!)</p>
|
| 171 |
+
|
| 172 |
+
<h3>Original Equation 2: 6xβ + 4xβ + 3xβ = 0</h3>
|
| 173 |
+
<p>6(9) + 4(-36) + 3(30) = 54 - 144 + 90 = 144 - 144 = <strong>0</strong> (Sahi hai!)</p>
|
| 174 |
+
|
| 175 |
+
<h3>Original Equation 3: 20xβ + 15xβ + 12xβ = 0</h3>
|
| 176 |
+
<p>20(9) + 15(-36) + 12(30) = 180 - 540 + 360 = 540 - 540 = <strong>0</strong> (Sahi hai!)</p>
|
| 177 |
+
|
| 178 |
+
<p>Solution bilkul sahi hai!</p>
|
| 179 |
+
</div>
|
| 180 |
+
</body>
|
| 181 |
+
</html>
|