ocr / app.py
sameernotes's picture
Update app.py
1e8ac17 verified
raw
history blame
15.9 kB
# app.py (Complete, for Hugging Face Spaces)
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, status, Request
from fastapi.responses import FileResponse, JSONResponse, HTMLResponse
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from fastapi.templating import Jinja2Templates
from pydantic import BaseModel, EmailStr, Field
from typing import List, Optional
import cv2
import numpy as np
import tensorflow as tf
import pickle
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
import os
import io
import sys
import tempfile
import requests
from PIL import Image
import uvicorn
import shutil
from pathlib import Path
import py_text_scan
from sqlalchemy import create_engine, Column, Integer, String, Boolean, Text, DateTime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, Session
from passlib.context import CryptContext
import datetime
# --- Database Setup (SQLite) ---
DATABASE_URL = "sqlite:///./test.db"
engine = create_engine(DATABASE_URL, connect_args={"check_same_thread": False})
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()
# --- Database Models ---
class User(Base):
__tablename__ = "users"
id = Column(Integer, primary_key=True, index=True)
username = Column(String, unique=True, index=True)
email = Column(String, unique=True, index=True)
hashed_password = Column(String)
is_active = Column(Boolean, default=True)
is_admin = Column(Boolean, default=False)
class Feedback(Base):
__tablename__ = "feedback"
id = Column(Integer, primary_key=True, index=True)
username = Column(String)
comment = Column(Text)
created_at = Column(DateTime, default=datetime.datetime.utcnow)
Base.metadata.create_all(bind=engine) # Create tables
# --- Pydantic Schemas ---
class UserBase(BaseModel):
username: str = Field(..., min_length=3, max_length=50)
email: EmailStr
password: str = Field(..., min_length=6)
class UserCreate(UserBase):
pass
class User(UserBase):
id: int
is_active: bool
is_admin: bool
class Config:
from_attributes = True
class UserUpdate(BaseModel):
username: Optional[str] = None
email: Optional[EmailStr] = None
is_active: Optional[bool] = None
is_admin: Optional[bool] = None
class FeedbackBase(BaseModel):
username: str
comment: str
class FeedbackCreate(FeedbackBase):
pass
class Feedback(FeedbackBase):
id: int
created_at: datetime.datetime
class Config:
from_attributes = True
class Token(BaseModel):
access_token: str
token_type: str
class TokenData(BaseModel):
username: str | None = None
class OCRResponse(BaseModel):
sakshi_output: str
word_count: int
prediction_label: str
# --- Password Hashing ---
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
# --- Authentication ---
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
async def get_current_user(db: Session = Depends(get_db), token: str = Depends(oauth2_scheme)):
user = get_user_by_username(db, username=token)
if not user:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid authentication credentials",
headers={"WWW-Authenticate": "Bearer"},
)
return user
async def get_current_active_user(current_user: User = Depends(get_current_user)):
if not current_user.is_active:
raise HTTPException(status_code=400, detail="Inactive user")
return current_user
async def get_current_admin_user(current_user: User = Depends(get_current_active_user)):
if not current_user.is_admin:
raise HTTPException(status_code=403, detail="Not an administrator")
return current_user
# --- CRUD Operations ---
def get_user(db: Session, user_id: int):
return db.query(User).filter(User.id == user_id).first()
def get_user_by_username(db: Session, username: str):
return db.query(User).filter(User.username == username).first()
def get_user_by_email(db: Session, email: str):
return db.query(User).filter(User.email == email).first()
def get_users(db: Session, skip: int = 0, limit: int = 100):
return db.query(User).offset(skip).limit(limit).all()
def create_user(db: Session, user: UserCreate):
hashed_password = pwd_context.hash(user.password)
db_user = User(username=user.username, email=user.email, hashed_password=hashed_password)
db.add(db_user)
db.commit()
db.refresh(db_user)
return db_user
def update_user(db: Session, user_id: int, user: UserUpdate):
db_user = get_user(db, user_id)
if db_user:
for key, value in user.dict(exclude_unset=True).items():
setattr(db_user, key, value)
db.commit()
db.refresh(db_user)
return db_user
def delete_user(db: Session, user_id: int):
db_user = get_user(db, user_id)
if db_user:
db.delete(db_user)
db.commit()
return True
return False
def verify_password(plain_password, hashed_password):
return pwd_context.verify(plain_password, hashed_password)
def create_feedback(db: Session, feedback: FeedbackCreate):
db_feedback = Feedback(**feedback.dict())
db.add(db_feedback)
db.commit()
db.refresh(db_feedback)
return db_feedback
def get_feedback(db: Session, skip: int = 0, limit: int = 100):
return db.query(Feedback).order_by(Feedback.created_at.desc()).offset(skip).limit(limit).all()
# --- FastAPI App Setup ---
app = FastAPI(
title="Hindi OCR API",
description="API for Hindi OCR, word detection, authentication, and feedback",
version="1.0.0"
)
# --- Hugging Face Model and Resource URLs ---
MODEL_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/hindi_ocr_model.keras"
ENCODER_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/label_encoder.pkl"
FONT_URL = "https://huggingface.co/sameernotes/hindi-ocr/resolve/main/NotoSansDevanagari-Regular.ttf"
MODEL_PATH = "hindi_ocr_model.keras" # Local paths after download
ENCODER_PATH = "label_encoder.pkl"
FONT_PATH = "NotoSansDevanagari-Regular.ttf"
# --- Download Helper ---
def download_file(url, dest):
if not os.path.exists(dest):
print(f"Downloading {dest}...")
response = requests.get(url, stream=True)
response.raise_for_status()
with open(dest, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {dest}")
# --- Model Loading ---
def load_model():
if not os.path.exists(MODEL_PATH):
return None
return tf.keras.models.load_model(MODEL_PATH)
def load_label_encoder():
if not os.path.exists(ENCODER_PATH):
return None
with open(ENCODER_PATH, 'rb') as f:
return pickle.load(f)
# --- Global Variables ---
model = None
label_encoder = None
session_files = {} # For storing temporary file paths
# --- Startup Event ---
@app.on_event("startup")
async def startup_event():
global model, label_encoder
download_file(MODEL_URL, MODEL_PATH)
download_file(ENCODER_URL, ENCODER_PATH)
download_file(FONT_URL, FONT_PATH)
if os.path.exists(FONT_PATH):
fm.fontManager.addfont(FONT_PATH)
plt.rcParams['font.family'] = 'Noto Sans Devanagari'
model = load_model()
label_encoder = load_label_encoder()
# Create an admin user if one doesn't exist
db = SessionLocal()
if not get_user_by_username(db, "admin"):
admin_user = UserCreate(username="admin", email="[email protected]", password="adminpassword") #Change the password here
create_user(db, admin_user)
admin = get_user_by_username(db, "admin")
admin.is_admin = True # Make this user an admin
db.commit()
db.close()
# --- Word Detection ---
def detect_words(image):
_, binary = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
kernel = np.ones((3,3), np.uint8)
dilated = cv2.dilate(binary, kernel, iterations=2)
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
word_img = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
word_count = 0
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
if w > 10 and h > 10:
cv2.rectangle(word_img, (x, y), (x+w, y+h), (0, 255, 0), 2)
word_count += 1
return word_img, word_count
# --- Sakshi OCR ---
def run_py_text_scan(image_path):
buffer = io.StringIO()
old_stdout = sys.stdout
sys.stdout = buffer
try:
py_text_scan.generate(image_path)
finally:
sys.stdout = old_stdout
return buffer.getvalue()
# --- Image Processing ---
def process_image(image_array):
img = cv2.cvtColor(image_array, cv2.COLOR_RGB2GRAY)
word_detected_img, word_count = detect_words(img)
word_detection_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png").name
cv2.imwrite(word_detection_path, word_detected_img)
session_files['word_detection'] = word_detection_path
pred_path = None
try:
img_resized = cv2.resize(img, (128, 32))
img_norm = img_resized / 255.0
img_input = img_norm[np.newaxis, ..., np.newaxis]
if model is not None and label_encoder is not None:
pred = model.predict(img_input)
pred_label_idx = np.argmax(pred)
pred_label = label_encoder.inverse_transform([pred_label_idx])[0]
fig, ax = plt.subplots()
ax.imshow(img, cmap='gray')
ax.set_title(f"Predicted: {pred_label}", fontsize=12)
ax.axis('off')
pred_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png").name
plt.savefig(pred_path)
plt.close()
session_files['prediction'] = pred_path
else:
pred_label = "Model or encoder not loaded"
except Exception as e:
pred_label = f"Error: {str(e)}"
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
cv2.imwrite(tmp_file.name, img)
sakshi_output = run_py_text_scan(tmp_file.name)
os.unlink(tmp_file.name)
return {
"sakshi_output": sakshi_output,
"word_detection_path": word_detection_path if 'word_detection' in session_files else None,
"word_count": word_count,
"prediction_path": pred_path if 'prediction' in session_files else None,
"prediction_label": pred_label
}
# --- API Endpoints ---
# Authentication Endpoints
@app.post("/token", response_model=Token)
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends(), db: Session = Depends(get_db)):
user = get_user_by_username(db, form_data.username)
if not user or not verify_password(form_data.password, user.hashed_password):
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password",
headers={"WWW-Authenticate": "Bearer"},
)
# Use username as the access token (for simplicity in this example)
access_token = user.username
return {"access_token": access_token, "token_type": "bearer"}
@app.post("/signup", response_model=User)
async def signup(user: UserCreate = Depends(), db: Session = Depends(get_db)):
db_user = get_user_by_username(db, username=user.username)
if db_user:
raise HTTPException(status_code=400, detail="Username already registered")
db_user = get_user_by_email(db, email=user.email)
if db_user:
raise HTTPException(status_code=400, detail="Email already registered")
return create_user(db=db, user=user)
# OCR Endpoint
@app.post("/process/", response_model=OCRResponse)
async def process(file: UploadFile = File(...), current_user: User = Depends(get_current_active_user)):
if not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
for key, filepath in session_files.items():
if os.path.exists(filepath):
try:
os.unlink(filepath)
except:
pass
session_files.clear()
temp_file = tempfile.NamedTemporaryFile(delete=False)
try:
with temp_file as f:
shutil.copyfileobj(file.file, f)
image = Image.open(temp_file.name)
image_array = np.array(image)
result = process_image(image_array)
return OCRResponse(
sakshi_output=result["sakshi_output"],
word_count=result["word_count"],
prediction_label=result["prediction_label"]
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
finally:
os.unlink(temp_file.name)
@app.get("/word-detection/")
async def get_word_detection(current_user: User = Depends(get_current_active_user)):
if 'word_detection' not in session_files or not os.path.exists(session_files['word_detection']):
raise HTTPException(status_code=404, detail="Word detection image not found")
return FileResponse(session_files['word_detection'])
@app.get("/prediction/")
async def get_prediction(current_user: User = Depends(get_current_active_user)):
if 'prediction' not in session_files or not os.path.exists(session_files['prediction']):
raise HTTPException(status_code=404, detail="Prediction image not found")
return FileResponse(session_files['prediction'])
# Feedback Endpoint
@app.post("/feedback/", response_model=Feedback)
async def create_feedback_route(feedback: FeedbackCreate, current_user: User = Depends(get_current_active_user),db: Session = Depends(get_db)):
return create_feedback(db=db, feedback=feedback)
# Admin Endpoints
@app.get("/admin/users/", response_model=List[User])
async def read_users(skip: int = 0, limit: int = 100, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
users = get_users(db, skip=skip, limit=limit)
return users
@app.get("/admin/users/{user_id}", response_model=User)
async def read_user(user_id: int, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
db_user = get_user(db, user_id=user_id)
if db_user is None:
raise HTTPException(status_code=404, detail="User not found")
return db_user
@app.put("/admin/users/{user_id}", response_model=User)
async def update_user_route(user_id: int, user: UserUpdate, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
updated_user = update_user(db=db, user_id=user_id, user=user)
if updated_user is None:
raise HTTPException(status_code=404, detail="User not found")
return updated_user
@app.delete("/admin/users/{user_id}", response_model=dict)
async def delete_user_route(user_id: int, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
if delete_user(db=db, user_id=user_id):
return {"message": "User deleted successfully"}
else:
raise HTTPException(status_code=404, detail="User not found")
@app.get("/admin/feedback/", response_model=List[Feedback])
async def read_feedback(skip: int = 0, limit: int = 100, db: Session = Depends(get_db), current_user: User = Depends(get_current_admin_user)):
feedback = get_feedback(db, skip=skip, limit=limit)
return feedback
# Basic Root Endpoint
@app.get("/")
async def root():
return {"message": "Hindi OCR API with Authentication and Admin. See /docs for API details."}
# --- Run with uvicorn (for local testing) ---
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)