|
import gradio as gr
|
|
import torch
|
|
import numpy as np
|
|
from torchaudio.functional import resample
|
|
|
|
from processAudio import upscaleAudio
|
|
|
|
class Object(object):
|
|
pass
|
|
|
|
with gr.Blocks(theme=gr.themes.Default().set(body_background_fill="#CCEEFF")) as layout:
|
|
with gr.Row():
|
|
gr.Markdown("<h2>Broadcast Audio Upscaler</h2>")
|
|
with gr.Row():
|
|
with open("html/directions.html", "r") as directionsHtml:
|
|
gr.Markdown(directionsHtml.read())
|
|
with gr.Row():
|
|
modelSelect = gr.Dropdown(
|
|
[
|
|
["FM Radio Super Resolution","FM_Radio_SR.th"],
|
|
["AM Radio Super Resolution (Beta v2)","AM_Radio_SR.th"],
|
|
["Telephone Super Resolution (Beta)","Telephone_SR.th"]
|
|
],
|
|
label="Select Model:",
|
|
value="FM_Radio_SR.th",
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
audioFileSelect = gr.Audio(label="Audio File (Mono or Stereo, Max 6 Minutes):",sources="upload", max_length=360)
|
|
with gr.Column():
|
|
audioOutput = gr.Audio(show_download_button=True, label="Restored Audio:", sources=[], max_length=360)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
submit = gr.Button("Process Audio", variant="primary", interactive=False)
|
|
with gr.Row():
|
|
with gr.Accordion("More Information:", open=False):
|
|
with open("html/information.html", "r") as informationHtml:
|
|
gr.Markdown(informationHtml.read())
|
|
|
|
@audioFileSelect.input(inputs=audioFileSelect, outputs=[submit, audioFileSelect])
|
|
def audioFileSelectChanged(audioData: gr.Audio):
|
|
|
|
if audioData is None:
|
|
return gr.update(interactive=False), None
|
|
if len(audioData[1].shape) == 1:
|
|
return gr.update(interactive=True), audioData
|
|
if audioData[1].shape[1] > 2:
|
|
gr.Warning("Audio with more than 2 channels is not supported.")
|
|
return gr.update(interactive=False), None
|
|
return gr.update(interactive=True), audioData
|
|
|
|
|
|
@submit.click(inputs=[modelSelect, audioFileSelect], outputs=audioOutput)
|
|
def processAudio(model: gr.Dropdown, audioData: gr.Audio):
|
|
if audioData is None:
|
|
raise gr.Error("Load an audio file.")
|
|
return None
|
|
elif len(audioData[1].shape) == 1:
|
|
lrAudio = torch.tensor(np.array([
|
|
audioData[1].copy().astype(np.float32)/32768,
|
|
audioData[1].copy().astype(np.float32)/32768
|
|
]))
|
|
elif audioData[1].shape[1] > 2:
|
|
raise gr.Error("Audio with more than 2 channels is not supported.")
|
|
return None
|
|
else:
|
|
lrAudio = torch.tensor(audioData[1].copy().astype(np.float32)/32768).transpose(0,1)
|
|
if audioData[0] != 44100:
|
|
lrAudio = resample(lrAudio, audioData[0], 44100)
|
|
model_name, experiment_file = getModelInfo(model)
|
|
hrAudio=upscaleAudio(lrAudio, model, model_name=model_name, experiment_file=experiment_file)
|
|
hrAudio=hrAudio / max(hrAudio.abs().max().item(), 1)
|
|
outAudio=(hrAudio*32767).numpy().astype(np.int16).transpose(1,0)
|
|
return tuple([44100, outAudio])
|
|
|
|
def getModelInfo(modelFilename: str):
|
|
if(modelFilename == "FM_Radio_SR.th"):
|
|
return "aero", "aero_441-441_512_256.yaml"
|
|
if(modelFilename == "AM_Radio_SR.th"):
|
|
return "aero", "aero_441-441_512_256.yaml"
|
|
if(modelFilename == "Telephone_SR.th"):
|
|
return "aero", "aero_441-441_512_256.yaml"
|
|
return "aero", "aero_441-441_512_256.yaml"
|
|
|
|
layout.launch() |