Spaces:
Sleeping
Sleeping
Create new file
Browse files- lib/utils/autoanchor.py +133 -0
lib/utils/autoanchor.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
# Auto-anchor utils
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import yaml
|
| 8 |
+
from scipy.cluster.vq import kmeans
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
from lib.utils import is_parallel
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def check_anchor_order(m):
|
| 14 |
+
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
| 15 |
+
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
| 16 |
+
da = a[-1] - a[0] # delta a
|
| 17 |
+
ds = m.stride[-1] - m.stride[0] # delta s
|
| 18 |
+
if da.sign() != ds.sign(): # same order
|
| 19 |
+
print('Reversing anchor order')
|
| 20 |
+
m.anchors[:] = m.anchors.flip(0)
|
| 21 |
+
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def run_anchor(logger,dataset, model, thr=4.0, imgsz=640):
|
| 25 |
+
det = model.module.model[model.module.detector_index] if is_parallel(model) \
|
| 26 |
+
else model.model[model.detector_index]
|
| 27 |
+
anchor_num = det.na * det.nl
|
| 28 |
+
new_anchors = kmean_anchors(dataset, n=anchor_num, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
| 29 |
+
new_anchors = torch.tensor(new_anchors, device=det.anchors.device).type_as(det.anchors)
|
| 30 |
+
det.anchor_grid[:] = new_anchors.clone().view_as(det.anchor_grid) # for inference
|
| 31 |
+
det.anchors[:] = new_anchors.clone().view_as(det.anchors) / det.stride.to(det.anchors.device).view(-1, 1, 1) # loss
|
| 32 |
+
check_anchor_order(det)
|
| 33 |
+
logger.info(str(det.anchors))
|
| 34 |
+
print('New anchors saved to model. Update model config to use these anchors in the future.')
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
| 38 |
+
""" Creates kmeans-evolved anchors from training dataset
|
| 39 |
+
Arguments:
|
| 40 |
+
path: path to dataset *.yaml, or a loaded dataset
|
| 41 |
+
n: number of anchors
|
| 42 |
+
img_size: image size used for training
|
| 43 |
+
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
| 44 |
+
gen: generations to evolve anchors using genetic algorithm
|
| 45 |
+
verbose: print all results
|
| 46 |
+
Return:
|
| 47 |
+
k: kmeans evolved anchors
|
| 48 |
+
Usage:
|
| 49 |
+
from utils.autoanchor import *; _ = kmean_anchors()
|
| 50 |
+
"""
|
| 51 |
+
thr = 1. / thr
|
| 52 |
+
|
| 53 |
+
def metric(k, wh): # compute metrics
|
| 54 |
+
r = wh[:, None] / k[None]
|
| 55 |
+
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
| 56 |
+
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
| 57 |
+
return x, x.max(1)[0] # x, best_x
|
| 58 |
+
|
| 59 |
+
def anchor_fitness(k): # mutation fitness
|
| 60 |
+
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
| 61 |
+
return (best * (best > thr).float()).mean() # fitness
|
| 62 |
+
|
| 63 |
+
def print_results(k):
|
| 64 |
+
k = k[np.argsort(k.prod(1))] # sort small to large
|
| 65 |
+
x, best = metric(k, wh0)
|
| 66 |
+
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
| 67 |
+
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
|
| 68 |
+
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
|
| 69 |
+
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
|
| 70 |
+
for i, x in enumerate(k):
|
| 71 |
+
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
| 72 |
+
return k
|
| 73 |
+
|
| 74 |
+
if isinstance(path, str): # not class
|
| 75 |
+
raise TypeError('Dataset must be class, but found str')
|
| 76 |
+
else:
|
| 77 |
+
dataset = path # dataset
|
| 78 |
+
|
| 79 |
+
labels = [db['label'] for db in dataset.db]
|
| 80 |
+
labels = np.vstack(labels)
|
| 81 |
+
if not (labels[:, 1:] <= 1).all():
|
| 82 |
+
# normalize label
|
| 83 |
+
labels[:, [2, 4]] /= dataset.shapes[0]
|
| 84 |
+
labels[:, [1, 3]] /= dataset.shapes[1]
|
| 85 |
+
# Get label wh
|
| 86 |
+
shapes = img_size * dataset.shapes / dataset.shapes.max()
|
| 87 |
+
# wh0 = np.concatenate([l[:, 3:5] * shapes for l in labels]) # wh
|
| 88 |
+
wh0 = labels[:, 3:5] * shapes
|
| 89 |
+
# Filter
|
| 90 |
+
i = (wh0 < 3.0).any(1).sum()
|
| 91 |
+
if i:
|
| 92 |
+
print('WARNING: Extremely small objects found. '
|
| 93 |
+
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0)))
|
| 94 |
+
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
| 95 |
+
|
| 96 |
+
# Kmeans calculation
|
| 97 |
+
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
|
| 98 |
+
s = wh.std(0) # sigmas for whitening
|
| 99 |
+
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
| 100 |
+
k *= s
|
| 101 |
+
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
| 102 |
+
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
| 103 |
+
k = print_results(k)
|
| 104 |
+
|
| 105 |
+
# Plot
|
| 106 |
+
# k, d = [None] * 20, [None] * 20
|
| 107 |
+
# for i in tqdm(range(1, 21)):
|
| 108 |
+
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
| 109 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
| 110 |
+
# ax = ax.ravel()
|
| 111 |
+
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
| 112 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
| 113 |
+
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
| 114 |
+
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
| 115 |
+
# fig.savefig('wh.png', dpi=200)
|
| 116 |
+
|
| 117 |
+
# Evolve
|
| 118 |
+
npr = np.random
|
| 119 |
+
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
| 120 |
+
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar
|
| 121 |
+
for _ in pbar:
|
| 122 |
+
v = np.ones(sh)
|
| 123 |
+
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
| 124 |
+
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
| 125 |
+
kg = (k.copy() * v).clip(min=2.0)
|
| 126 |
+
fg = anchor_fitness(kg)
|
| 127 |
+
if fg > f:
|
| 128 |
+
f, k = fg, kg.copy()
|
| 129 |
+
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
|
| 130 |
+
if verbose:
|
| 131 |
+
print_results(k)
|
| 132 |
+
|
| 133 |
+
return print_results(k)
|