File size: 7,293 Bytes
a1ca19c
 
 
 
 
 
 
 
 
 
 
73e72ae
a1ca19c
 
 
 
 
 
 
 
 
18c04b6
73e72ae
a1ca19c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import pandas as pd
import numpy as np
from random import normalvariate, random
import plotly.express as px

from cadCAD.configuration.utils import config_sim
from cadCAD.configuration import Experiment
from cadCAD.engine import ExecutionContext, Executor
from cadCAD import configs
import streamlit as st

from PIL import Image
# Additional dependencies

# For analytics
import numpy as np
# For visualization
import plotly.express as px
pd.options.plotting.backend = "plotly"

st.header('CeSci Value Flow Model')
image = Image.open('cesci.png')
st.image(image, caption='CeSci value flow schema')

def p_value_flow(params, substep, state_history, previous_state):
    funding = 0
    management_costs = 0
    to_researcher = 0
    to_journal = 0
    salary = 0
    losses = 0
    if random() < params['probability_funding'] and (previous_state['funding_pool'] > funding):
        funding = params['funding_round']
        management_costs = funding * params['alpha']
        to_researcher = funding - management_costs
        losses = management_costs

        research_value = funding * (1-params['epsilon'])
        losses += to_researcher - research_value

        salary = research_value * params['beta']
        to_journal = research_value + params['cost_publishing']
        if random() < params['probability_buying']:
            salary = salary - params['cost_buying']
            to_journal += params['cost_buying']
    # losses = funding - to_journal
    return {'update_researcher_funding': to_researcher,
            'update_funding_pool': -funding,
            'update_journal': to_journal,
            'update_researcher_done': salary,
            'update_losses': losses}

def s_researcher_value(params, substep, state_history, previous_state, policy_input):
    research_funding = policy_input['update_researcher_funding']
    research_salary = policy_input['update_researcher_done']
    research_value = previous_state['researcher_value']

    if research_salary == 0:
        updated_researcher_value = research_funding + research_value
        return 'researcher_value', updated_researcher_value
    else:
        updated_researcher_value = research_salary + research_value
        return 'researcher_value', updated_researcher_value

def s_journal_value(params, substep, state_history, previous_state, policy_input):
    to_journal = policy_input['update_journal']
    journal_value = previous_state['journal_value']

    updated_journal_value = to_journal + journal_value

    return 'journal_value', updated_journal_value

def s_funding_pool(params, substep, state_history, previous_state, policy_input):
    funding_pool = previous_state['funding_pool']
    updated_funding_pool = funding_pool + policy_input['update_funding_pool']
    if updated_funding_pool < 0:
        updated_funding_pool = 0
    return 'funding_pool', updated_funding_pool

def s_losses(params, substep, state_history, previous_state, policy_input):
    losses = previous_state['losses']
    updated_losses = losses + policy_input['update_losses']
    return 'losses', updated_losses

st.subheader('Initial Value Allocation')
funding_pool = st.slider('Initial Funding Pool', min_value=1000, max_value=10000, value=1000, step=10)
researcher_value = st.slider('Initial Researcher Tokens', min_value=0, max_value=1000, value=0, step=1)
journal_value = st.slider('Initial Journal Tokens', min_value=0, max_value=1000, value=0, step=1)
st.subheader('Simulation Parameters')
st.write('Set the funding disbursed each round from the funding pool')
funding_round = st.slider('Funding Round', min_value=100, max_value=1000, value=100, step=1)
st.write('Set the relative value leakages in the model.')
alpha = st.slider('Management Cost Weight', min_value=0., max_value=1., value=0.1, step=0.0001)
epsilon = st.slider('Work Inefficiency Weight', min_value=0., max_value=1., value=0.1, step=0.0001)
st.write('Set the portion of grant funding to be used as researcher salary.')
beta = st.slider('Salary Weight', min_value=0., max_value=1., value=0.4, step=0.0001)
st.write('Set the cost of publishing to a journal and the cost of getting access to papers.')
cost_publishing = st.slider('Cost of Publishing', min_value=10., max_value=100., value=10., step=0.1)
cost_buying = st.slider('Cost of Buying', min_value=10., max_value=100., value=10., step=0.1)
st.write('Set the probability a researcher will buy access to a paper at each timestep.')
probability_buying = st.slider('Researcher Probability of Buying', min_value=0., max_value=1., value=0.1, step=0.0001)
st.write('Set the probability the grant funding agency will disburse funding each round.')
probability_funding = st.slider('Probability of Disbursing Funding', min_value=0., max_value=1., value=0.9, step=0.0001)
st.write('Set the number of timesteps in the simulation.')
timesteps = st.slider('Timesteps', min_value=10, max_value=1000, value=100, step=1)

initial_state = {
    'funding_pool': funding_pool,
    'researcher_value': researcher_value,
    'journal_value': journal_value,
    'losses': 0
}

system_params = {
    'funding_pool': [funding_pool],
    'funding_round': [funding_round],
    'alpha': [alpha],
    'beta': [beta],
    'epsilon': [epsilon],
    'cost_publishing': [cost_publishing],
    'cost_buying': [cost_buying],
    'probability_buying': [probability_buying],
    'probability_funding': [probability_funding]
}

def generate_sim_config(monte_carlo_runs=1,
                   timesteps=timesteps,
                   system_params=system_params):
    sim_config = config_sim({
        'N': monte_carlo_runs, # the number of times we'll run the simulation ("Monte Carlo runs")
        'T': range(timesteps), # the number of timesteps the simulation will run for
        'M': system_params # the parameters of the system
    })

    return sim_config

def configure_experiment(initial_state,
                      partial_state_update_blocks,
                      sim_config):
    experiment = Experiment()
    experiment.append_configs(
        initial_state=initial_state,
        partial_state_update_blocks=partial_state_update_blocks,
        sim_configs=sim_config
    )

    return experiment

partial_state_update_blocks = [
    {
        'policies': {
            'p_value_flow': p_value_flow
        },
        'variables': {
            'funding_pool': s_funding_pool,
            'researcher_value': s_researcher_value,
            'journal_value': s_journal_value,
            'losses': s_losses
        }
    }
]

def execute_simulation(experiment):
    exec_context = ExecutionContext()
    configs = experiment.configs
    simulation = Executor(exec_context=exec_context, configs=configs)
    raw_result, tensor_field, sessions = simulation.execute()

    return raw_result

if st.button('Run Simulation'):
    sim_config = generate_sim_config()
    experiment = configure_experiment(initial_state, partial_state_update_blocks, sim_config)
    raw_result = execute_simulation(experiment)
    df = pd.DataFrame(raw_result)
    fig1 = df.plot(kind='line', x='timestep', y=['funding_pool','researcher_value', 'journal_value'], width=1000)
    fig2 = df.plot(kind='line', x='timestep', y=['funding_pool', 'losses'], width=1000)
    st.subheader('Results')
    st.plotly_chart(fig1)
    st.plotly_chart(fig2)