accusaga-bot / app.py_best.txt
srivatsavdamaraju's picture
Rename app.py to app.py_best.txt
53aed8d verified
from fastapi import FastAPI, HTTPException, Query as QueryParam
from pydantic import BaseModel, Field
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from qdrant_client import QdrantClient
from langchain.agents import Tool, AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.tools import BaseTool
from langchain.memory import ConversationBufferMemory
from langchain_core.messages import HumanMessage, AIMessage
from typing import Type, Optional, List, Dict, Any
import os
import warnings
import base64
import requests
from dotenv import load_dotenv
from datetime import datetime
import json
# Suppress warnings
warnings.filterwarnings("ignore", message="Qdrant client version.*is incompatible.*")
load_dotenv()
app = FastAPI(title="AI Agent with Document Search, Project Management and Session Memory")
# Environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
QDRANT_COLLECTION_NAME = os.getenv("QDRANT_COLLECTION_NAME", "vatsav_test_1")
QDRANT_HOST = os.getenv("QDRANT_HOST", "127.0.0.1")
QDRANT_PORT = int(os.getenv("QDRANT_PORT", 6333))
# Initialize models
embedding_model = OpenAIEmbeddings(
model="text-embedding-3-large",
openai_api_key=OPENAI_API_KEY,
)
qdrant_client = QdrantClient(host=QDRANT_HOST, port=QDRANT_PORT)
llm = ChatOpenAI(model="gpt-4o", temperature=0, openai_api_key=OPENAI_API_KEY)
# === USER SESSION MANAGEMENT ===
# In-memory storage for user sessions (in production, use Redis or database)
user_memories: Dict[int, ConversationBufferMemory] = {}
user_chat_history: Dict[int, List[Dict]] = {}
def get_or_create_user_memory(user_login_id: int) -> ConversationBufferMemory:
"""Get or create a conversation memory for a user"""
if user_login_id not in user_memories:
user_memories[user_login_id] = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
user_chat_history[user_login_id] = []
return user_memories[user_login_id]
def add_to_chat_history(user_login_id: int, user_message: str, ai_response: str):
"""Add messages to user chat history"""
if user_login_id not in user_chat_history:
user_chat_history[user_login_id] = []
timestamp = datetime.now().isoformat()
# Add user message
user_chat_history[user_login_id].append({
"id": len(user_chat_history[user_login_id]) + 1,
"type": "user",
"message": user_message,
"timestamp": timestamp
})
# Add AI response
user_chat_history[user_login_id].append({
"id": len(user_chat_history[user_login_id]) + 1,
"type": "assistant",
"message": ai_response,
"timestamp": timestamp
})
# === INPUT SCHEMAS ===
class Query(BaseModel):
message: str
class ProjectRequest(BaseModel):
userLoginId: int
orgId: int
auth_token: str
class AgentQuery(BaseModel):
message: str
userLoginId: int # Now required for user-based memory
orgId: Optional[int] = None
auth_token: Optional[str] = None
class ChatHistoryResponse(BaseModel):
user_login_id: int
total_messages: int
messages: List[Dict[str, Any]]
# === UTILITY FUNCTIONS ===
def get_encoded_auth_token(user: int, token: str) -> str:
auth_string = f"{user}:{token}"
return base64.b64encode(auth_string.encode("utf-8")).decode("utf-8")
def fetch_user_projects(userLoginId: int, orgId: int, auth_token: str):
url = "https://japidemo.dev.ingenspark.com/fetchUserProjects"
payload = {
"userLoginId": userLoginId,
"orgId": orgId
}
headers = {
'accept': 'application/json, text/plain, */*',
'authorization': f'Basic {auth_token}',
'content-type': 'application/json; charset=UTF-8'
}
print("auth_token", auth_token)
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise HTTPException(status_code=response.status_code if 'response' in locals() else 500,
detail=str(e))
def format_project_response(data: dict) -> str:
my_projects = data.get("data", {}).get("Myprojects", [])
other_projects = data.get("data", {}).get("Otherprojects", [])
all_projects = []
for project in my_projects:
all_projects.append({
"type": "Your Project",
"projectNm": project["projectNm"],
"projectId": project["projectId"],
"created_dttm": project["created_dttm"].split('.')[0],
"description": project["description"],
"categoryName": project["categoryName"]
})
for project in other_projects:
all_projects.append({
"type": "Other Project",
"projectNm": project["projectNm"],
"projectId": project["projectId"],
"created_dttm": project["created_dttm"].split('.')[0],
"description": project["description"],
"categoryName": project["categoryName"]
})
if not all_projects:
return "❌ No projects found."
# Build the formatted string
result = [f"βœ… You have access to {len(all_projects)} project(s):\n"]
for i, project in enumerate(all_projects, 1):
result.append(f"{i}. Project Name: {project['projectNm']} ({project['type']})")
result.append(f" Project ID: {project['projectId']}")
result.append(f" Created On: {project['created_dttm']}")
result.append(f" Description: {project['description']}")
result.append(f" Category: {project['categoryName']}\n")
return "\n".join(result)
# === TOOL FUNCTIONS ===
def search_documents(query: str) -> str:
"""Search through ingested documents and get relevant information.
Args:
query: The search query or message about the documents
Returns:
Relevant information from the documents with sources
"""
try:
# Generate embedding for the query
query_vector = embedding_model.embed_query(query)
# Search in Qdrant
search_result = qdrant_client.search(
collection_name=QDRANT_COLLECTION_NAME,
query_vector=query_vector,
limit=5,
)
if not search_result:
return "No relevant information found in the knowledge base."
# Convert results to text content
context_texts = []
sources = []
for hit in search_result:
context_texts.append(hit.payload["text"])
sources.append(hit.payload.get("source", "unknown"))
# Create a simple prompt for answering based on context
context = "\n\n".join(context_texts)
unique_sources = list(set(sources))
# Use the LLM directly to answer the message based on context
prompt = f"""Based on the following context, answer the message: {query}
Context:
{context}
Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to answer the message, say so clearly."""
response = llm.invoke(prompt)
return f"{response.content}\n\nSources: {', '.join(unique_sources)}"
except Exception as e:
return f"Error searching documents: {str(e)}"
# Global variables to store auth context (for tool functions)
_current_user_id = None
_current_org_id = None
_current_auth_token = None
def get_user_projects(userLoginId: str) -> str:
"""Get list of projects for a user. Requires userLoginId as input.
Args:
userLoginId: The user login ID to fetch projects for (format: 'userLoginId:orgId' or just 'userLoginId')
Returns:
Formatted list of user projects
"""
try:
# Use global auth context if available
if _current_auth_token and _current_user_id:
user_id = _current_user_id
org_id = _current_org_id or 1
auth_token = _current_auth_token
else:
# Parse userLoginId (can be "25" or "25:1" format) - fallback
if ":" in userLoginId:
user_id, org_id = userLoginId.split(":", 1)
user_id = int(user_id)
org_id = int(org_id)
else:
user_id = int(userLoginId)
org_id = 1 # Default org ID
return "❌ Authentication token required. Please provide auth_token in your request."
# Encode auth token using the actual user ID and provided token
encoded_token = get_encoded_auth_token(user_id, auth_token)
# Fetch projects
data = fetch_user_projects(user_id, org_id, encoded_token)
print("Fetched data:", data) # Debugging line
# Format and return the project list
formatted = format_project_response(data)
return formatted
except ValueError:
return "❌ Invalid userLoginId format. Please provide a valid number or 'userLoginId:orgId' format."
except Exception as e:
return f"❌ Error fetching projects: {str(e)}"
# === CREATE TOOLS ===
document_search_tool = Tool(
name="document_search",
description="""Use this tool to search through ingested documents and get relevant information from the knowledge base.
Perfect for answering messages about uploaded documents, manuals, or any content that was previously stored.
Input should be a search query or message about the documents.""",
func=search_documents
)
project_list_tool = Tool(
name="get_user_projects",
description="""Use this tool to get the list of projects for a user.
Perfect for when users ask about their projects, want to see available projects, or need project information.
Input should be the userLoginId (e.g., '25') or in format 'userLoginId:orgId' (e.g., '25:1').
Note: This tool requires authentication context to be set.""",
func=get_user_projects
)
# === AGENT SETUP ===
def create_agent_with_memory(memory: ConversationBufferMemory):
"""Create agent with session memory"""
agent_prompt = ChatPromptTemplate.from_messages([
("system", """You are a helpful AI assistant with access to multiple tools and conversation memory:
1. **Document Search**: Search through uploaded documents and knowledge base
2. **Project Management**: Get list of user projects and project information
Your capabilities:
- Answer messages about documents using the document search tool
- Help users find their projects and project information
- Remember previous conversations in this session
- Provide general assistance and information
- Use appropriate tools based on user queries
Guidelines:
- Use the document search tool when users ask about specific content, documentation, or information that might be in uploaded files
- Use the project tool when users ask about projects, want to see their projects, or need project-related information
- Reference previous conversation context when relevant
- If users mention a userLoginId or ask about projects, use the project tool
- Be clear about which tool you're using and what information you're providing
- If you're unsure which tool to use, you can ask for clarification
- Provide helpful, accurate, and well-formatted responses
Remember: Always use the most appropriate tool based on the user's message and conversation context to provide the best possible answer."""),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
# Create tools list
tools = [document_search_tool, project_list_tool]
# Create the agent
agent = create_openai_tools_agent(llm, tools, agent_prompt)
# Create the agent executor with memory
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
memory=memory
)
return agent_executor
# === API ENDPOINTS ===
@app.post("/bot")
def chat_with_agent(query: AgentQuery):
"""Main agent endpoint with user-based memory - handles both document search and project queries intelligently"""
try:
# Set global auth context for tools
global _current_user_id, _current_org_id, _current_auth_token
_current_user_id = query.userLoginId
_current_org_id = query.orgId
_current_auth_token = query.auth_token
# Get or create user memory
memory = get_or_create_user_memory(query.userLoginId)
# Create agent with memory
agent_executor = create_agent_with_memory(memory)
# Prepare the input for the agent
agent_input = query.message
# If user provided credentials, add them to the context
if query.userLoginId is not None:
agent_input += f" [UserLoginId: {query.userLoginId}"
if query.orgId is not None:
agent_input += f", OrgId: {query.orgId}"
agent_input += "]"
# Use the agent to process the query
result = agent_executor.invoke({"input": agent_input})
# Add to chat history
add_to_chat_history(query.userLoginId, query.message, result["output"])
# Clear auth context after use
_current_user_id = None
_current_org_id = None
_current_auth_token = None
return {
"message": query.message,
"answer": result["output"],
"user_login_id": query.userLoginId,
"agent_used": True
}
except Exception as e:
# Clear auth context on error
_current_user_id = None
_current_org_id = None
_current_auth_token = None
return {
"message": query.message,
"answer": f"An error occurred: {str(e)}",
"user_login_id": query.userLoginId,
"agent_used": True
}
@app.get("/get-chat-history/{user_login_id}")
def get_chat_history(
user_login_id: int,
n: int = QueryParam(10, description="Number of recent messages to return")
) -> ChatHistoryResponse:
"""Get chat history for a user"""
try:
if user_login_id not in user_chat_history:
return ChatHistoryResponse(
user_login_id=user_login_id,
total_messages=0,
messages=[]
)
history = user_chat_history[user_login_id]
# Get the last n messages (or all if less than n)
recent_messages = history[-n:] if len(history) > n else history
return ChatHistoryResponse(
user_login_id=user_login_id,
total_messages=len(history),
messages=recent_messages
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error fetching chat history: {str(e)}")
@app.delete("/clear-user-history/{user_login_id}")
def clear_user_history(user_login_id: int):
"""Clear user memory and chat history"""
try:
if user_login_id in user_memories:
del user_memories[user_login_id]
if user_login_id in user_chat_history:
del user_chat_history[user_login_id]
return {
"message": f"User {user_login_id} chat history cleared successfully",
"user_login_id": user_login_id
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error clearing user history: {str(e)}")
@app.get("/active-users")
def get_active_users():
"""Get list of active users with chat history"""
return {
"active_users": list(user_memories.keys()),
"total_active_users": len(user_memories)
}
@app.post("/chat-documents")
def chat_documents_only(query: Query):
"""Direct document search without agent"""
try:
result = search_documents(query.message)
return {
"message": query.message,
"answer": result,
"tool_used": "document_search"
}
except Exception as e:
return {
"message": query.message,
"answer": f"An error occurred: {str(e)}",
"tool_used": "document_search"
}
@app.post("/list-projects")
def list_projects(request: ProjectRequest):
"""Direct project listing without agent"""
try:
# Use the provided auth token and userLoginId
encoded_token = get_encoded_auth_token(request.userLoginId, request.auth_token)
print("Encoded token:", encoded_token)
# Fetch projects
data = fetch_user_projects(request.userLoginId, request.orgId, encoded_token)
# Format and return the project list
formatted = format_project_response(data)
return {
"projects": formatted,
"tool_used": "project_list"
}
except Exception as e:
return {
"error": f"An error occurred: {str(e)}",
"tool_used": "project_list"
}
@app.get("/health")
def health():
return {
"status": "ok",
"tools": ["document_search", "project_list"],
"agent": "active",
"user_memory_management": "enabled",
"active_users": len(user_memories)
}
if __name__ == "__main__":
import uvicorn
try:
uvicorn.run(app, host="0.0.0.0", port=8000)
except KeyboardInterrupt:
print("\nπŸ›‘ Server stopped gracefully")
except Exception as e:
print(f"❌ Server error: {e}")