Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| import os | |
| from PIL import Image | |
| import os | |
| import gradio as gr | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", | |
| transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map='cuda'),torch_dtype=dtype).to(device) | |
| pipe.load_lora_weights( | |
| "dx8152/Qwen-Edit-2509-Multiple-angles", | |
| weight_name="镜头转换.safetensors", adapter_name="angles" | |
| ) | |
| # pipe.load_lora_weights( | |
| # "lovis93/next-scene-qwen-image-lora-2509", | |
| # weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene" | |
| # ) | |
| pipe.set_adapters(["angles"], adapter_weights=[1.]) | |
| pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25) | |
| # pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.) | |
| pipe.unload_lora_weights() | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle): | |
| prompt_parts = [] | |
| # Rotation | |
| if rotate_deg != 0: | |
| direction = "left" if rotate_deg > 0 else "right" | |
| if direction == "left": | |
| prompt_parts.append(f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left.") | |
| else: | |
| prompt_parts.append(f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right.") | |
| # Move forward / close-up | |
| if move_forward >= 5: | |
| prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.") | |
| elif move_forward >= 1: | |
| prompt_parts.append("将镜头向前移动 Move the camera forward.") | |
| # Vertical tilt | |
| if vertical_tilt <= -1: | |
| prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.") | |
| elif vertical_tilt >= 1: | |
| prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.") | |
| # Lens option | |
| if wideangle: | |
| prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.") | |
| final_prompt = " ".join(prompt_parts).strip() | |
| return final_prompt if final_prompt else "" | |
| def infer_camera_edit( | |
| image, | |
| prev_output, | |
| rotate_deg, | |
| move_forward, | |
| vertical_tilt, | |
| wideangle, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| ): | |
| prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle) | |
| print(f"Generated Prompt: {prompt}") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Choose input image (prefer uploaded, else last output) | |
| pil_images = [] | |
| if image is not None: | |
| if isinstance(image, Image.Image): | |
| pil_images.append(image.convert("RGB")) | |
| elif hasattr(image, "name"): | |
| pil_images.append(Image.open(image.name).convert("RGB")) | |
| elif prev_output is not None: | |
| pil_images.append(prev_output.convert("RGB")) | |
| if len(pil_images) == 0: | |
| raise gr.Error("Please upload an image first.") | |
| result = pipe( | |
| image=pil_images, | |
| prompt=prompt, | |
| height=height if height != 0 else None, | |
| width=width if width != 0 else None, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return result, seed, prompt | |
| # --- UI --- | |
| css = "#col-container { max-width: 800px; margin: 0 auto; }" | |
| is_reset = gr.State(value=False) | |
| def reset_all(): | |
| return [0, 0, 0, 0, False, True] | |
| def end_reset(): | |
| return False | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control") | |
| gr.Markdown( | |
| "" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Input Image", type="pil", sources=["upload"]) | |
| prev_output = gr.State(value=None) | |
| is_reset = gr.State(value=False) | |
| with gr.Group(): | |
| rotate_deg = gr.Slider(label="Rotate Left–Right (°)", minimum=-90, maximum=90, step=45, value=0) | |
| move_forward = gr.Slider(label="Move Forward → Close-Up", minimum=0, maximum=10, step=5, value=0) | |
| vertical_tilt = gr.Slider(label="Vertical Angle (Bird ↔ Worm)", minimum=-1, maximum=1, step=1, value=0) | |
| wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False) | |
| with gr.Row(): | |
| reset_btn = gr.Button("reset settings") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) | |
| height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024) | |
| width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024) | |
| run_btn = gr.Button("Generate", variant="primary", visible=False) | |
| with gr.Column(): | |
| result = gr.Image(label="Output Image") | |
| prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False) | |
| #gr.Markdown("_Each change applies a fresh camera instruction to the last output image._") | |
| inputs = [ | |
| image, prev_output, rotate_deg, move_forward, | |
| vertical_tilt, wideangle, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width | |
| ] | |
| outputs = [result, seed, prompt_preview] | |
| # Reset behavior | |
| reset_btn.click( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset], | |
| queue=False | |
| ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False) | |
| # Manual generation | |
| run_event = run_btn.click(fn=infer_camera_edit, inputs=inputs, outputs=outputs) | |
| # Image upload resets | |
| image.change( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset], | |
| queue=False | |
| ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False) | |
| # Live updates | |
| def maybe_infer(is_reset, *args): | |
| if is_reset: | |
| return gr.update(), gr.update(), gr.update() | |
| else: | |
| return infer_camera_edit(*args) | |
| control_inputs = [ | |
| image, prev_output, rotate_deg, move_forward, | |
| vertical_tilt, wideangle, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width | |
| ] | |
| control_inputs_with_flag = [is_reset] + control_inputs | |
| for control in [rotate_deg, move_forward, vertical_tilt, wideangle]: | |
| control.change(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs, show_progress="minimal") | |
| run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output]) | |
| demo.launch() |