Spaces:
Sleeping
Sleeping
use gr.Tab components instead of TabbedInterface
#1
by
fffiloni
- opened
app.py
CHANGED
@@ -17,33 +17,6 @@ def use_gemini(pdf_filepath, key):
|
|
17 |
result = gemini_extractor.extract(content, config)
|
18 |
return result
|
19 |
|
20 |
-
with gr.Blocks(title="PDF data extraction with Gemini & Indexify") as gemini_demo:
|
21 |
-
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Gemini & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
22 |
-
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
23 |
-
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
24 |
-
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_gemini.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
25 |
-
|
26 |
-
with gr.Row():
|
27 |
-
with gr.Column():
|
28 |
-
gr.HTML(
|
29 |
-
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
30 |
-
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
31 |
-
"You can extract from PDF files continuously and try various other extractors locally with "
|
32 |
-
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
33 |
-
)
|
34 |
-
pdf_file_1 = gr.File(type="filepath")
|
35 |
-
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
36 |
-
key_1 = gr.Textbox(info="Please enter your GEMINI_API_KEY", label="Key:")
|
37 |
-
with gr.Column():
|
38 |
-
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
39 |
-
go_button_1 = gr.Button(value="Run Gemini extractor", variant="primary")
|
40 |
-
model_output_text_box_1 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_1")
|
41 |
-
|
42 |
-
with gr.Row():
|
43 |
-
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
44 |
-
|
45 |
-
go_button_1.click(fn=use_gemini, inputs=[pdf_file_1, key_1], outputs=[model_output_text_box_1])
|
46 |
-
|
47 |
def use_openai(pdf_filepath, key):
|
48 |
if pdf_filepath is None:
|
49 |
raise gr.Error("Please provide some input PDF: upload a PDF file")
|
@@ -54,34 +27,62 @@ def use_openai(pdf_filepath, key):
|
|
54 |
result = oai_extractor.extract(content, config)
|
55 |
return result
|
56 |
|
57 |
-
with gr.Blocks(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
demo.queue()
|
87 |
demo.launch()
|
|
|
17 |
result = gemini_extractor.extract(content, config)
|
18 |
return result
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def use_openai(pdf_filepath, key):
|
21 |
if pdf_filepath is None:
|
22 |
raise gr.Error("Please provide some input PDF: upload a PDF file")
|
|
|
27 |
result = oai_extractor.extract(content, config)
|
28 |
return result
|
29 |
|
30 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
31 |
+
with gr.Tab("PDF data extraction with Gemini & Indexify"):
|
32 |
+
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Gemini & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
33 |
+
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
34 |
+
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
35 |
+
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_gemini.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
36 |
|
37 |
+
with gr.Row():
|
38 |
+
with gr.Column():
|
39 |
+
gr.HTML(
|
40 |
+
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
41 |
+
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
42 |
+
"You can extract from PDF files continuously and try various other extractors locally with "
|
43 |
+
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
44 |
+
)
|
45 |
+
pdf_file_1 = gr.File(type="filepath")
|
46 |
+
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
47 |
+
key_1 = gr.Textbox(info="Please enter your GEMINI_API_KEY", label="Key:")
|
48 |
+
with gr.Column():
|
49 |
+
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
50 |
+
go_button_1 = gr.Button(value="Run Gemini extractor", variant="primary")
|
51 |
+
model_output_text_box_1 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_1")
|
52 |
|
53 |
+
with gr.Row():
|
54 |
+
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
55 |
|
56 |
+
go_button_1.click(fn=use_gemini, inputs=[pdf_file_1, key_1], outputs=[model_output_text_box_1])
|
57 |
|
58 |
+
|
59 |
+
|
60 |
+
with gr.Tab("PDF data extraction with OpenAI & Indexify"):
|
61 |
+
gr.HTML("<h1 style='text-align: center'>PDF data extraction with OpenAI & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
62 |
+
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
63 |
+
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
64 |
+
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_openai.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
gr.HTML(
|
69 |
+
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
70 |
+
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
71 |
+
"You can extract from PDF files continuously and try various other extractors locally with "
|
72 |
+
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
73 |
+
)
|
74 |
+
pdf_file_2 = gr.File(type="filepath")
|
75 |
+
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
76 |
+
key_2 = gr.Textbox(info="Please enter your OPENAI_API_KEY", label="Key:")
|
77 |
+
with gr.Column():
|
78 |
+
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
79 |
+
go_button_2 = gr.Button(value="Run OpenAI extractor", variant="primary")
|
80 |
+
model_output_text_box_2 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_2")
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
84 |
+
|
85 |
+
go_button_2.click(fn=use_openai, inputs=[pdf_file_2, key_2], outputs=[model_output_text_box_2])
|
86 |
|
87 |
demo.queue()
|
88 |
demo.launch()
|