cyberosa commited on
Commit
7bb8323
Β·
1 Parent(s): a1e2e79

using new KPI dataframe

Browse files
Files changed (2) hide show
  1. app.py +17 -19
  2. tabs/agent_graphs.py +3 -22
app.py CHANGED
@@ -155,13 +155,13 @@ def load_all_data():
155
  repo_type="dataset",
156
  )
157
  df9 = pd.read_parquet(daa_pearl_df)
158
- # Read pearl_agents.parquet
159
- pearl_agents_df = hf_hub_download(
160
  repo_id="valory/Olas-predict-dataset",
161
- filename="pearl_agents.parquet",
162
  repo_type="dataset",
163
  )
164
- df10 = pd.read_parquet(pearl_agents_df)
165
  return df1, df2, df3, df4, df5, df6, df7, df8, df9, df10
166
 
167
 
@@ -177,7 +177,7 @@ def prepare_data():
177
  all_mech_calls,
178
  daa_qs_df,
179
  daa_pearl_df,
180
- pearl_agents_df,
181
  ) = load_all_data()
182
  all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
183
  "UTC"
@@ -255,7 +255,7 @@ def prepare_data():
255
  all_mech_calls,
256
  daa_qs_df,
257
  daa_pearl_df,
258
- pearl_agents_df,
259
  )
260
 
261
 
@@ -269,7 +269,7 @@ def prepare_data():
269
  all_mech_calls,
270
  daa_qs_df,
271
  daa_pearl_df,
272
- pearl_agents_df,
273
  ) = prepare_data()
274
 
275
  retention_df = prepare_retention_dataset(
@@ -571,10 +571,11 @@ with demo:
571
  with gr.Row():
572
  gr.Markdown("# 2-weeks rolling average ROI for Pearl agents")
573
  with gr.Row():
574
- pearl_rolling_avg_plot = plot_rolling_average_roi(
575
- traders_data=traders_data,
576
- pearl_agents=pearl_agents_df,
577
- )
 
578
  with gr.Row():
579
  gr.Markdown("# Average weekly ROI for Pearl agents")
580
  with gr.Row():
@@ -583,11 +584,10 @@ with demo:
583
  )
584
  with gr.Row():
585
  weekly_avg_roi_plot = plot_weekly_average_roi(
586
- traders_data=traders_data,
587
- pearl_agents=pearl_agents_df,
588
  )
589
 
590
- with gr.TabItem("πŸͺ Retention metrics (WIP)"):
591
  with gr.Row():
592
  gr.Markdown("# Wow retention by trader type")
593
  with gr.Row():
@@ -705,7 +705,7 @@ with demo:
705
  # )
706
  with gr.TabItem("βš™οΈ Active traders"):
707
  with gr.Row():
708
- gr.Markdown("# Active traders for all markets by trader categories")
709
  with gr.Row():
710
  active_traders_plot = plot_active_traders(active_traders)
711
 
@@ -717,9 +717,7 @@ with demo:
717
  )
718
 
719
  with gr.Row():
720
- gr.Markdown(
721
- "# Active traders for Quickstart markets by trader categories"
722
- )
723
  with gr.Row():
724
  active_traders_plot_qs = plot_active_traders(
725
  active_traders, market_creator="quickstart"
@@ -742,7 +740,7 @@ with demo:
742
  with gr.Column(scale=1):
743
  interpretation = get_interpretation_text()
744
 
745
- with gr.TabItem("πŸ’° Money invested per trader type"):
746
  with gr.Row():
747
  gr.Markdown("# Weekly total bet amount per trader type for all markets")
748
  gr.Markdown("## Computed only for trader agents using the mech service")
 
155
  repo_type="dataset",
156
  )
157
  df9 = pd.read_parquet(daa_pearl_df)
158
+ # Read weekly_avg_roi_pearl_agents.parquet
159
+ weekly_avg_roi_pearl_agents = hf_hub_download(
160
  repo_id="valory/Olas-predict-dataset",
161
+ filename="weekly_avg_roi_pearl_agents.parquet",
162
  repo_type="dataset",
163
  )
164
+ df10 = pd.read_parquet(weekly_avg_roi_pearl_agents)
165
  return df1, df2, df3, df4, df5, df6, df7, df8, df9, df10
166
 
167
 
 
177
  all_mech_calls,
178
  daa_qs_df,
179
  daa_pearl_df,
180
+ weekly_avg_roi_pearl_agents,
181
  ) = load_all_data()
182
  all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
183
  "UTC"
 
255
  all_mech_calls,
256
  daa_qs_df,
257
  daa_pearl_df,
258
+ weekly_avg_roi_pearl_agents,
259
  )
260
 
261
 
 
269
  all_mech_calls,
270
  daa_qs_df,
271
  daa_pearl_df,
272
+ weekly_avg_roi_pearl_agents,
273
  ) = prepare_data()
274
 
275
  retention_df = prepare_retention_dataset(
 
571
  with gr.Row():
572
  gr.Markdown("# 2-weeks rolling average ROI for Pearl agents")
573
  with gr.Row():
574
+ # pearl_rolling_avg_plot = plot_rolling_average_roi(
575
+ # traders_data=traders_data,
576
+ # pearl_agents=weekly_avg_roi_pearl_agents,
577
+ # )
578
+ print("WIP")
579
  with gr.Row():
580
  gr.Markdown("# Average weekly ROI for Pearl agents")
581
  with gr.Row():
 
584
  )
585
  with gr.Row():
586
  weekly_avg_roi_plot = plot_weekly_average_roi(
587
+ weekly_avg_roi_df=weekly_avg_roi_pearl_agents,
 
588
  )
589
 
590
+ with gr.TabItem("πŸͺ Retention metrics"):
591
  with gr.Row():
592
  gr.Markdown("# Wow retention by trader type")
593
  with gr.Row():
 
705
  # )
706
  with gr.TabItem("βš™οΈ Active traders"):
707
  with gr.Row():
708
+ gr.Markdown("# Active Pearl traders by trader categories")
709
  with gr.Row():
710
  active_traders_plot = plot_active_traders(active_traders)
711
 
 
717
  )
718
 
719
  with gr.Row():
720
+ gr.Markdown("# Active Quickstart traders by trader categories")
 
 
721
  with gr.Row():
722
  active_traders_plot_qs = plot_active_traders(
723
  active_traders, market_creator="quickstart"
 
740
  with gr.Column(scale=1):
741
  interpretation = get_interpretation_text()
742
 
743
+ with gr.TabItem("πŸ’° Money invested per markets"):
744
  with gr.Row():
745
  gr.Markdown("# Weekly total bet amount per trader type for all markets")
746
  gr.Markdown("## Computed only for trader agents using the mech service")
tabs/agent_graphs.py CHANGED
@@ -116,36 +116,17 @@ def get_weekly_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
116
  return weekly_avg
117
 
118
 
119
- def plot_weekly_average_roi(
120
- traders_data: pd.DataFrame, pearl_agents: pd.DataFrame
121
- ) -> gr.Plot:
122
  """Function to plot the weekly average of ROI for pearl agents"""
123
- # Get the list of unique addresses from the daa_pearl_df
124
- unique_addresses = pearl_agents["safe_address"].unique()
125
-
126
- # Filter the weekly_roi_df to include only those addresses
127
- filtered_traders_data = traders_data[
128
- traders_data["trader_address"].isin(unique_addresses)
129
- ].copy()
130
 
131
- # create the date column
132
- filtered_traders_data["creation_timestamp"] = pd.to_datetime(
133
- filtered_traders_data["creation_timestamp"]
134
- )
135
- filtered_traders_data["creation_date"] = filtered_traders_data[
136
- "creation_timestamp"
137
- ].dt.date
138
-
139
- # Get the weekly average ROI
140
- weekly_avg_roi_df = get_weekly_average_roi(filtered_traders_data)
141
  print("Weekly average ROI DataFrame:")
142
  print(weekly_avg_roi_df.head())
143
 
144
  # Update the plot to use the correct column name 'weekly_avg_roi'
145
  fig = px.line(
146
  weekly_avg_roi_df,
147
- x="creation_date",
148
- y="roi", # Changed from 'roi' to 'weekly_avg_roi'
149
  )
150
  fig.update_layout(
151
  xaxis_title="Week",
 
116
  return weekly_avg
117
 
118
 
119
+ def plot_weekly_average_roi(weekly_avg_roi_df: pd.DataFrame) -> gr.Plot:
 
 
120
  """Function to plot the weekly average of ROI for pearl agents"""
 
 
 
 
 
 
 
121
 
 
 
 
 
 
 
 
 
 
 
122
  print("Weekly average ROI DataFrame:")
123
  print(weekly_avg_roi_df.head())
124
 
125
  # Update the plot to use the correct column name 'weekly_avg_roi'
126
  fig = px.line(
127
  weekly_avg_roi_df,
128
+ x="week_start",
129
+ y="avg_weekly_roi", # Changed from 'roi' to 'weekly_avg_roi'
130
  )
131
  fig.update_layout(
132
  xaxis_title="Week",