cyberosa
commited on
Commit
Β·
7bb8323
1
Parent(s):
a1e2e79
using new KPI dataframe
Browse files- app.py +17 -19
- tabs/agent_graphs.py +3 -22
app.py
CHANGED
@@ -155,13 +155,13 @@ def load_all_data():
|
|
155 |
repo_type="dataset",
|
156 |
)
|
157 |
df9 = pd.read_parquet(daa_pearl_df)
|
158 |
-
# Read
|
159 |
-
|
160 |
repo_id="valory/Olas-predict-dataset",
|
161 |
-
filename="
|
162 |
repo_type="dataset",
|
163 |
)
|
164 |
-
df10 = pd.read_parquet(
|
165 |
return df1, df2, df3, df4, df5, df6, df7, df8, df9, df10
|
166 |
|
167 |
|
@@ -177,7 +177,7 @@ def prepare_data():
|
|
177 |
all_mech_calls,
|
178 |
daa_qs_df,
|
179 |
daa_pearl_df,
|
180 |
-
|
181 |
) = load_all_data()
|
182 |
all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
|
183 |
"UTC"
|
@@ -255,7 +255,7 @@ def prepare_data():
|
|
255 |
all_mech_calls,
|
256 |
daa_qs_df,
|
257 |
daa_pearl_df,
|
258 |
-
|
259 |
)
|
260 |
|
261 |
|
@@ -269,7 +269,7 @@ def prepare_data():
|
|
269 |
all_mech_calls,
|
270 |
daa_qs_df,
|
271 |
daa_pearl_df,
|
272 |
-
|
273 |
) = prepare_data()
|
274 |
|
275 |
retention_df = prepare_retention_dataset(
|
@@ -571,10 +571,11 @@ with demo:
|
|
571 |
with gr.Row():
|
572 |
gr.Markdown("# 2-weeks rolling average ROI for Pearl agents")
|
573 |
with gr.Row():
|
574 |
-
pearl_rolling_avg_plot = plot_rolling_average_roi(
|
575 |
-
|
576 |
-
|
577 |
-
)
|
|
|
578 |
with gr.Row():
|
579 |
gr.Markdown("# Average weekly ROI for Pearl agents")
|
580 |
with gr.Row():
|
@@ -583,11 +584,10 @@ with demo:
|
|
583 |
)
|
584 |
with gr.Row():
|
585 |
weekly_avg_roi_plot = plot_weekly_average_roi(
|
586 |
-
|
587 |
-
pearl_agents=pearl_agents_df,
|
588 |
)
|
589 |
|
590 |
-
with gr.TabItem("πͺ Retention metrics
|
591 |
with gr.Row():
|
592 |
gr.Markdown("# Wow retention by trader type")
|
593 |
with gr.Row():
|
@@ -705,7 +705,7 @@ with demo:
|
|
705 |
# )
|
706 |
with gr.TabItem("βοΈ Active traders"):
|
707 |
with gr.Row():
|
708 |
-
gr.Markdown("# Active traders
|
709 |
with gr.Row():
|
710 |
active_traders_plot = plot_active_traders(active_traders)
|
711 |
|
@@ -717,9 +717,7 @@ with demo:
|
|
717 |
)
|
718 |
|
719 |
with gr.Row():
|
720 |
-
gr.Markdown(
|
721 |
-
"# Active traders for Quickstart markets by trader categories"
|
722 |
-
)
|
723 |
with gr.Row():
|
724 |
active_traders_plot_qs = plot_active_traders(
|
725 |
active_traders, market_creator="quickstart"
|
@@ -742,7 +740,7 @@ with demo:
|
|
742 |
with gr.Column(scale=1):
|
743 |
interpretation = get_interpretation_text()
|
744 |
|
745 |
-
with gr.TabItem("π° Money invested per
|
746 |
with gr.Row():
|
747 |
gr.Markdown("# Weekly total bet amount per trader type for all markets")
|
748 |
gr.Markdown("## Computed only for trader agents using the mech service")
|
|
|
155 |
repo_type="dataset",
|
156 |
)
|
157 |
df9 = pd.read_parquet(daa_pearl_df)
|
158 |
+
# Read weekly_avg_roi_pearl_agents.parquet
|
159 |
+
weekly_avg_roi_pearl_agents = hf_hub_download(
|
160 |
repo_id="valory/Olas-predict-dataset",
|
161 |
+
filename="weekly_avg_roi_pearl_agents.parquet",
|
162 |
repo_type="dataset",
|
163 |
)
|
164 |
+
df10 = pd.read_parquet(weekly_avg_roi_pearl_agents)
|
165 |
return df1, df2, df3, df4, df5, df6, df7, df8, df9, df10
|
166 |
|
167 |
|
|
|
177 |
all_mech_calls,
|
178 |
daa_qs_df,
|
179 |
daa_pearl_df,
|
180 |
+
weekly_avg_roi_pearl_agents,
|
181 |
) = load_all_data()
|
182 |
all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
|
183 |
"UTC"
|
|
|
255 |
all_mech_calls,
|
256 |
daa_qs_df,
|
257 |
daa_pearl_df,
|
258 |
+
weekly_avg_roi_pearl_agents,
|
259 |
)
|
260 |
|
261 |
|
|
|
269 |
all_mech_calls,
|
270 |
daa_qs_df,
|
271 |
daa_pearl_df,
|
272 |
+
weekly_avg_roi_pearl_agents,
|
273 |
) = prepare_data()
|
274 |
|
275 |
retention_df = prepare_retention_dataset(
|
|
|
571 |
with gr.Row():
|
572 |
gr.Markdown("# 2-weeks rolling average ROI for Pearl agents")
|
573 |
with gr.Row():
|
574 |
+
# pearl_rolling_avg_plot = plot_rolling_average_roi(
|
575 |
+
# traders_data=traders_data,
|
576 |
+
# pearl_agents=weekly_avg_roi_pearl_agents,
|
577 |
+
# )
|
578 |
+
print("WIP")
|
579 |
with gr.Row():
|
580 |
gr.Markdown("# Average weekly ROI for Pearl agents")
|
581 |
with gr.Row():
|
|
|
584 |
)
|
585 |
with gr.Row():
|
586 |
weekly_avg_roi_plot = plot_weekly_average_roi(
|
587 |
+
weekly_avg_roi_df=weekly_avg_roi_pearl_agents,
|
|
|
588 |
)
|
589 |
|
590 |
+
with gr.TabItem("πͺ Retention metrics"):
|
591 |
with gr.Row():
|
592 |
gr.Markdown("# Wow retention by trader type")
|
593 |
with gr.Row():
|
|
|
705 |
# )
|
706 |
with gr.TabItem("βοΈ Active traders"):
|
707 |
with gr.Row():
|
708 |
+
gr.Markdown("# Active Pearl traders by trader categories")
|
709 |
with gr.Row():
|
710 |
active_traders_plot = plot_active_traders(active_traders)
|
711 |
|
|
|
717 |
)
|
718 |
|
719 |
with gr.Row():
|
720 |
+
gr.Markdown("# Active Quickstart traders by trader categories")
|
|
|
|
|
721 |
with gr.Row():
|
722 |
active_traders_plot_qs = plot_active_traders(
|
723 |
active_traders, market_creator="quickstart"
|
|
|
740 |
with gr.Column(scale=1):
|
741 |
interpretation = get_interpretation_text()
|
742 |
|
743 |
+
with gr.TabItem("π° Money invested per markets"):
|
744 |
with gr.Row():
|
745 |
gr.Markdown("# Weekly total bet amount per trader type for all markets")
|
746 |
gr.Markdown("## Computed only for trader agents using the mech service")
|
tabs/agent_graphs.py
CHANGED
@@ -116,36 +116,17 @@ def get_weekly_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
|
|
116 |
return weekly_avg
|
117 |
|
118 |
|
119 |
-
def plot_weekly_average_roi(
|
120 |
-
traders_data: pd.DataFrame, pearl_agents: pd.DataFrame
|
121 |
-
) -> gr.Plot:
|
122 |
"""Function to plot the weekly average of ROI for pearl agents"""
|
123 |
-
# Get the list of unique addresses from the daa_pearl_df
|
124 |
-
unique_addresses = pearl_agents["safe_address"].unique()
|
125 |
-
|
126 |
-
# Filter the weekly_roi_df to include only those addresses
|
127 |
-
filtered_traders_data = traders_data[
|
128 |
-
traders_data["trader_address"].isin(unique_addresses)
|
129 |
-
].copy()
|
130 |
|
131 |
-
# create the date column
|
132 |
-
filtered_traders_data["creation_timestamp"] = pd.to_datetime(
|
133 |
-
filtered_traders_data["creation_timestamp"]
|
134 |
-
)
|
135 |
-
filtered_traders_data["creation_date"] = filtered_traders_data[
|
136 |
-
"creation_timestamp"
|
137 |
-
].dt.date
|
138 |
-
|
139 |
-
# Get the weekly average ROI
|
140 |
-
weekly_avg_roi_df = get_weekly_average_roi(filtered_traders_data)
|
141 |
print("Weekly average ROI DataFrame:")
|
142 |
print(weekly_avg_roi_df.head())
|
143 |
|
144 |
# Update the plot to use the correct column name 'weekly_avg_roi'
|
145 |
fig = px.line(
|
146 |
weekly_avg_roi_df,
|
147 |
-
x="
|
148 |
-
y="
|
149 |
)
|
150 |
fig.update_layout(
|
151 |
xaxis_title="Week",
|
|
|
116 |
return weekly_avg
|
117 |
|
118 |
|
119 |
+
def plot_weekly_average_roi(weekly_avg_roi_df: pd.DataFrame) -> gr.Plot:
|
|
|
|
|
120 |
"""Function to plot the weekly average of ROI for pearl agents"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
print("Weekly average ROI DataFrame:")
|
123 |
print(weekly_avg_roi_df.head())
|
124 |
|
125 |
# Update the plot to use the correct column name 'weekly_avg_roi'
|
126 |
fig = px.line(
|
127 |
weekly_avg_roi_df,
|
128 |
+
x="week_start",
|
129 |
+
y="avg_weekly_roi", # Changed from 'roi' to 'weekly_avg_roi'
|
130 |
)
|
131 |
fig.update_layout(
|
132 |
xaxis_title="Week",
|